February 13 Math 2306 sec. 54 Spring 2019

Section 6: Linear Equations Theory and Terminology

Recall that an n" order linear IVP consists of an equation

aly
an—1

ay
ax”n

an(X) 22 + ap_1(x) +otar(x) Zﬁ + ay(X)y = g(x)

to solve subject to conditions

yxo)=yo, Y0)=y1, .., ¥y (x) =y

The problem is called homogeneous if g(x) = 0. Otherwise it is called
nonhomogeneous.
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Theorem: Existence & Uniqueness

Theorem: If ay, ..., a, and g are continuous on an interval /,

an(x) # 0 for each x in I, and xg is any point in /, then for any choice of
constants yp, ..., ¥n_1, the IVP has a unique solution y(x) on /.

Put differently, we’re guaranteed to have a solution exist, and it is the
only one there is!
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Homogeneous Equations

We’ll consider the equation
dnf1y dy
W+---+a1(x)a+ao(x)y:0

and assume that each a; is continuous and a,, is never zero on the
interval of interest.

an() 2 4 ap ()

Theorem: If yq, v», ..., ¥k are all solutions of this homogeneous
equation on an interval /, then the linear combination

y(x) = ciy1(x) + coy(X) + - - + Ck¥k(X)

is also a solution on / for any choice of constants ¢, .. ., Cx.

This is called the principle of superposition.
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Corollaries

(i) If y4 solves the homogeneous equation, the any constant multiple
y = cyy is also a solution.

(i) The solution y = 0 (called the trivial solution) is always a solution
to a homogeneous equation.

Big Questions:
» Does an equation have any nontrivial solution(s), and

» since y; and cy; aren’t truly different solutions, what criteria will be
used to call solutions distinct?
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Linear Dependence

Definition: A set of functions fi(x), f(x), ..., f,(x) are said to be
linearly dependent on an interval / if there exists a set of constants
¢y, Co, ..., Cnp With at least one of them being nonzero such that

Cify(X) + Cofo(X) + - + Cafn(x) =0 forall xin /.

A set of functions that is not linearly dependent on / is said to be
linearly independent on /.
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Example: A linearly Dependent Set

The functions f;(x) = X2, f(x) = 4x, and f3(x) = x — x? are linearly
dependent on | = (—o0, 00).

Le need b Sho Hrok o b+ CIF_&U()"'C-;&(X)-" o) Qco\r

o reot x o seew Goetficienks C,,Cay (3 AOF all zeco
Cocdee CiV, G et Gl Noke
afoo+ b o+g Lo =
L 4 () () v L (¥ 2

'ox ok x-xt = 0 feca x
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Example: A linearly Independent Set

The functions f;(x) = sin x and f>(x) = cos x are linearly independent

on | = (—o0, 0).
(,Jc‘\\ r o ‘h'\o.r\- C\C.(k) + C.chtmro '('\"’ . x

S oonly Reue WK oczo a0

S"\P‘OSL’ C. 'Cl()() + (I‘Oz(k\ -0 *Fbr o ced x .

Se G Sax «CyCory = ()

Tres has b kol wlen ¥z0. Wa X=0, 1IN

WS ,
93\)0«\'\% C. g'u\(o\ + C2 Cos(6)= O

c(0y 4 (-0 2 7O
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Definition of Wronskian

Let fi, o, ..., f, posses at least n — 1 continuous derivatives on an
interval /. The Wronskian of this set of functions is the determinant

f b -y

fl £

W(fi by D)) = | S
f1(”_1) f2(n—1) frgn—1)

(Note that, in general, this Wronskian is a function of the independent
variable x. )
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Determinants

a b

If Aisa 2 x 2 matrix A = [ c d ] then its determinant

det(A) = ad — bc.

a1 a2 a3
fAisa3x3matrix A= | axy as ao3 |, then its determinant
azy dz2 dss

det(A) = a11det[ 42 ax } ay det[ 21 823 ]Jra det[ 21
dz2  dass dasz1 dass ass
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Determine the Wronskian of the Functions

fi(x) =sinx, f(x)=cosx

Q .ngx".Or\r le r~ad ¢
p c S w Cosx
| R -
\'Ju:\ D=
/ Cos - Sinx
£ )

:Sinx (_Qﬂ'\x\ - Gsx (C(x)

B ‘Q\AZX - C,Jlx
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: - (S'-'\z% + Cofz)(\)
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Determine the Wronskian of the Functions

f1(X):X27 f2(X):4X7 fS(X):X_X2

Y Bockions o I3 melriy

Goye. | bR B8

W §, £ () - , \ Co

e (:' cz LJ Tl 2x Y \- 2%
#‘ cz“ ‘(’:,” z 0o -2

2l 1 V-x 2x -2 _ 2x 4
=X -4Ux + (*“X )
o -2 2 - 2 o
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' (wc)— o(r 2x)> ~x (th-z) ) (‘—m) + (x-%) (Zx(o) -2(w)
Xz(-g\ -Uy ("(x S22+ ) + (=) (—%)

8% —uy (@) = gyt &Y

= 8x - 8x =0

W H.)@;)(:-A(x) =0
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Theorem (a test for linear independence)

Let fy, &, ..., f, be n— 1 times continuously differentiable on an interval
1. If there exists xp in / such that W(fy, &, ..., fy)(X0) # 0, then the
functions are linearly independent on /.

If y1, ¥, ..., yn are n solutions of the linear homogeneous n order
equation on an interval /, then the solutions are linearly independent
on /ifand only if W(ys, ys, ..., ¥n)(x) # 0 for' each x in I.

For solutions of one linear homogeneous ODE, the Wronskian is either always

Zero or is never zero.
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Determine if the functions are linearly dependent or

independent:

» :Xza Y2=X3 /:(0700)

L)(‘\\ use Py \\JnmsL}c.vx,

QY x*
\:\J(b,)\g,_)(x) : \ / \ - \
(

v, " 2x

3x"

: ¥2(3x1)-2><(x3):'3¥\1—2x‘1 = yb'
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Fundamental Solution Set
We're still considering this equation

dn dnf1y
an(x )dx”Jr n-1(X )dx”—1

with the assumptions a,(x) # 0 and a;(x) are continuous on /.

d
o () ok +a(x)y =0

Definition: A set of functions y1, y», ..., ¥» is a fundamental solution
set of the n" order homogeneous equation provided they

(i) are solutions of the equation,

(i) there are n of them, and

(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a
fundamental solution set.
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