
February 13 Math 2306 sec. 54 Spring 2019

Section 6: Linear Equations Theory and Terminology

Recall that an nth order linear IVP consists of an equation

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = g(x)

to solve subject to conditions

y(x0) = y0, y ′(x0) = y1, . . . , y (n−1)(x0) = yn−1.

The problem is called homogeneous if g(x) ≡ 0. Otherwise it is called
nonhomogeneous.
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Theorem: Existence & Uniqueness

Theorem: If a0, . . . ,an and g are continuous on an interval I,
an(x) 6= 0 for each x in I, and x0 is any point in I, then for any choice of
constants y0, . . . , yn−1, the IVP has a unique solution y(x) on I.

Put differently, we’re guaranteed to have a solution exist, and it is the
only one there is!
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Homogeneous Equations
We’ll consider the equation

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = 0

and assume that each ai is continuous and an is never zero on the
interval of interest.

Theorem: If y1, y2, . . . , yk are all solutions of this homogeneous
equation on an interval I, then the linear combination

y(x) = c1y1(x) + c2y2(x) + · · ·+ ckyk (x)

is also a solution on I for any choice of constants c1, . . . , ck .

This is called the principle of superposition.
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Corollaries

(i) If y1 solves the homogeneous equation, the any constant multiple
y = cy1 is also a solution.

(ii) The solution y = 0 (called the trivial solution) is always a solution
to a homogeneous equation.

Big Questions:
I Does an equation have any nontrivial solution(s), and
I since y1 and cy1 aren’t truly different solutions, what criteria will be

used to call solutions distinct?
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Linear Dependence

Definition: A set of functions f1(x), f2(x), . . . , fn(x) are said to be
linearly dependent on an interval I if there exists a set of constants
c1, c2, . . . , cn with at least one of them being nonzero such that

c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0 for all x in I.

A set of functions that is not linearly dependent on I is said to be
linearly independent on I.
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Example: A linearly Dependent Set

The functions f1(x) = x2, f2(x) = 4x , and f3(x) = x − x2 are linearly
dependent on I = (−∞,∞).
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Example: A linearly Independent Set

The functions f1(x) = sin x and f2(x) = cos x are linearly independent
on I = (−∞,∞).
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Definition of Wronskian

Let f1, f2, . . . , fn posses at least n − 1 continuous derivatives on an
interval I. The Wronskian of this set of functions is the determinant

W (f1, f2, . . . , fn)(x) =

∣∣∣∣∣∣∣∣∣
f1 f2 · · · fn
f ′1 f ′2 · · · f ′n
...

...
...

...
f (n−1)
1 f (n−1)

2 · · · f (n−1)
n

∣∣∣∣∣∣∣∣∣ .

(Note that, in general, this Wronskian is a function of the independent
variable x . )
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Determinants

If A is a 2× 2 matrix A =

[
a b
c d

]
, then its determinant

det(A) = ad − bc.

If A is a 3× 3 matrix A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, then its determinant

det(A) = a11det
[

a22 a23
a32 a33

]
−a12det

[
a21 a23
a31 a33

]
+a13det

[
a21 a22
a31 a32

]
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Determine the Wronskian of the Functions

f1(x) = sin x , f2(x) = cos x
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Determine the Wronskian of the Functions

f1(x) = x2, f2(x) = 4x , f3(x) = x − x2
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Theorem (a test for linear independence)

Let f1, f2, . . . , fn be n− 1 times continuously differentiable on an interval
I. If there exists x0 in I such that W (f1, f2, . . . , fn)(x0) 6= 0, then the
functions are linearly independent on I.

If y1, y2, . . . , yn are n solutions of the linear homogeneous nth order
equation on an interval I, then the solutions are linearly independent
on I if and only if W (y1, y2, . . . , yn)(x) 6= 0 for1 each x in I.

1For solutions of one linear homogeneous ODE, the Wronskian is either always
zero or is never zero.
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Determine if the functions are linearly dependent or
independent:

y1 = x2, y2 = x3 I = (0,∞)
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Fundamental Solution Set
We’re still considering this equation

an(x)
dny
dxn + an−1(x)

dn−1y
dxn−1 + · · ·+ a1(x)

dy
dx

+ a0(x)y = 0

with the assumptions an(x) 6= 0 and ai(x) are continuous on I.

Definition: A set of functions y1, y2, . . . , yn is a fundamental solution
set of the nth order homogeneous equation provided they

(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a
fundamental solution set.
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