February 13 Math 2306 sec. 60 Spring 2018

Section 6: Linear Equations Theory and Terminology

We'll consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assume that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval I, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on / for any choice of constants c_{1}, \ldots, c_{k}.
This is called the principle of superposition.

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l .
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on l.

Examples

We saw that $f_{1}(x)=x^{2}, f_{2}(x)=4 x, f_{3}(x)=x-x^{2}$ were linearly dependent on $(-\infty, \infty)$ because

$$
4 x^{2}-1(4 x)+4\left(x-x^{2}\right)=0 \quad \text { for all real } x
$$

At least one (in fact all) of the coefficients are nonzero. By comparison, $f_{1}(x)=\sin (x), f_{2}(x)=\cos (x)$ are linearly independent on $(-\infty, \infty)$ because the equation

$$
c_{1} \sin (x)+c_{2} \cos (x)=0 \quad \text { for all real } x
$$

is ONLY true if $c_{1}=0$ and $c_{2}=0$.

We would like a general tool to determine linear dependence/independence at least in the case that we have sufficiently differentiable functions (like the ones that solve differential equations).

Definition of Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

2 functions $\rightarrow 2 \times 2$ matrix

$$
\begin{aligned}
W\left(f_{1}, f_{2}\right)(x) & =\left|\begin{array}{cc}
f_{1}(x) & f_{2}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x)
\end{array}\right| \\
& =\left|\begin{array}{cc}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right| \\
& =\sin x(-\sin x)-\cos x(\cos x)
\end{aligned}
$$

$$
\begin{aligned}
= & -\sin ^{2} x-\cos ^{2} x \\
& =-\left(\sin ^{2} x+\cos ^{2} x\right) \\
& =-1 \\
W\left(f_{1}, f_{2}\right)(x) & =-1
\end{aligned}
$$

Determine the Wronskian of the Functions

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

3 functions $\rightarrow 3 x^{3}$ matrix

$$
\begin{aligned}
W\left(f_{1}, f_{2}, f_{3}\right)(x) & =\left|\begin{array}{ccc}
f_{1}^{\prime}(x) & f_{2}(x) & f_{3}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & f_{3}^{\prime}(x) \\
f_{1}^{\prime \prime}(x) & f_{2}^{\prime \prime}(x) & f_{3}^{\prime \prime}(x)
\end{array}\right| \\
& =\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right| \\
& =x^{2}(4(-2)-0(1-2 x))-4 x(2 x(-2)-2(1-2 x))+\left(x-x^{2}\right)(2 x(0)-2(4)) \\
& =x^{2}(-8)-4 x(-4 x-2+4 x)+\left(x-x^{2}\right)(-8) \\
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0 \\
& W\left(f_{1}, f_{2}, f_{3}\right)(x)=0
\end{aligned}
$$

Theorem (a test for linear independence)

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for 1 each x in I.

[^0]Determine if the functions are linearly dependent or independent:

$$
y_{1}=e^{x}, \quad y_{2}=e^{-2 x} \quad I=(-\infty, \infty)
$$

We cen use the Wrunstion.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
e^{x} & e^{-2 x} \\
e^{x} & -2 e^{-2 x}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =e^{x}\left(-2 e^{-2 x}\right)-e^{x}\left(e^{-2 x}\right) \\
& =-2 e^{-x}-e^{-x}=-3 e^{-x} \\
W\left(y, y_{2}\right)(x) & =-3 e^{-x} \text { non zero }
\end{aligned}
$$

The functions ore linearly independent.

Fundamental Solution Set

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ form a fundamental solution set of the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \quad \text { on } \quad(0, \infty)
$$

and determine the general solution.
we reed to show that y_{1}, y_{2} are solutions and that they are linearly independent.

Show y, is a solution:

$$
\begin{aligned}
& y_{1}=x^{2}, \quad y_{1}^{\prime}=2 x, \quad y_{1}^{\prime \prime}=2 \\
& x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1}=x^{2}(2)-4 x(2 x)+6\left(x^{2}\right) \\
&=2 x^{2}-8 x^{2}+6 x^{2}=0
\end{aligned}
$$

y_{1} is a solution.
Show y_{2} solves the ODE.

$$
\begin{aligned}
& y_{2}=x^{3}, \quad y_{2}^{\prime}=3 x^{2}, \quad y_{2}^{\prime \prime}=6 x \\
& x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2}=x^{2}(6 x)-4 x\left(3 x^{2}\right)+6\left(x^{3}\right) \\
& =6 x^{3}-12 x^{3}+6 x^{3} \\
& =0
\end{aligned}
$$

so y_{2} solves it as well.
we can use the Wronskion to show the
are linearly independent.

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|
\end{aligned} \begin{aligned}
& =x^{2}\left(3 x^{2}\right)-2 x\left(x^{3}\right) \\
& =3 x^{4}-2 x^{4}=x^{4}
\end{aligned}
$$

$$
W\left(y_{1}, y_{2}\right)=x^{4} \neq 0
$$

The, are lin. independert. We have a fundamental solution set. The several solution

$$
y=c_{1} x^{2}+c_{2} x^{3}
$$

Nonhomogeneous Equations

Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Theorem: General Solution of Nonhomogeneous Equation

Let y_{p} be any solution of the nonhomogeneous equation, and let y_{1}, y_{2}, \ldots, y_{n} be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is
where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constañts.

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

Note the form of the solution $y_{c}+y_{p}$!
(complementary plus particular)

Another Superposition Principle (for nonhomogeneous eqns.)
 Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions to the nonhomogeneous linear equations

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

for $i=1, \ldots, k$. Assume the domain of definition for all k equations is a common interval I.

Then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}
$$

is a particular solution of the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x) .
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$ We will construct the general solution by considering sub-problems.
(a) Part 1 Verify that

$$
\begin{array}{ll}
y_{p_{1}}=6 & \text { solves } \\
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36 \\
y_{p_{1}}^{\prime}=0 & x^{2} y_{p_{1}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}}= \\
y_{p_{1}}^{\prime \prime}=0 & x^{2}(0)-4 x(0)+6(6)=36
\end{array}
$$

So $y_{p_{1}}$ is a particular solution.

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Part 2 Verify that

$$
\begin{array}{rr}
y_{p_{2}}=-7 x & \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x \\
y_{p_{2}}^{\prime}=-7 & x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}}
\end{array}=\left\{\begin{array}{rr}
y_{p_{2}}^{\prime \prime}=0 & x^{2}(0)-4 x(-7)+6(-7 x) \\
= & 28 x-42 x
\end{array}\right)=-14 x .
$$

$y_{p_{L}}$ is a particular Solution.

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Part 3 We already know that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 . \quad 6 \text { associated } \text { homogeneous ign. }
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

$$
y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} x^{2}+c_{2} x^{3}
$$

B_{y} th principle of superposition $y_{p}=y_{p_{1}}+y_{p_{2}}=6-7 x$
The gevend solution to the nonhomogeneous equation is $\quad y=c_{1} x^{2}+c_{2} x^{3}+6-7 x$.

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=5
$$

The gereace solution to the ODE is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

So $y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7$
Apprising the 1,C.

$$
\begin{array}{r}
y(1)-c_{1}(1)^{2}+c_{2}(1)^{3}+6-7 \cdot 1=0 \\
c_{1}+c_{2}-1=0 \\
c_{1}+c_{2}=1
\end{array}
$$

$$
\begin{aligned}
& y^{\prime}(1)=2 c_{1} \cdot 1+3 c_{2}(1)^{2}-7=5 \\
& 2 c_{1}+3 c_{2}-7=5 \\
& 2 c_{1}+3 c_{2}=12 \\
& c_{1}+c_{2}=1 \Rightarrow 2 c_{1}+2 c_{2}=2 \\
& 2 c_{1}+3 c_{2}=12 \Rightarrow-\left(2 c_{1}+3 c_{2}=12\right) \\
&-c_{2}=-10 \\
& c_{2}=10
\end{aligned}
$$

The solution to the IVP is

$$
y=-9 x^{2}+10 x^{3}+6-7 x
$$

[^0]: ${ }^{1}$ For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

