February 13 Math 2306 sec. 60 Spring 2019

Section 6: Linear Equations Theory and Terminology

Recall that an $n^{\text {th }}$ order linear IVP consists of an equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

to solve subject to conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{n-1} .
$$

The problem is called homogeneous if $g(x) \equiv 0$. Otherwise it is called nonhomogeneous.

Theorem: Existence \& Uniqueness

Theorem: If a_{0}, \ldots, a_{n} and g are continuous on an interval I, $a_{n}(x) \neq 0$ for each x in I, and x_{0} is any point in I, then for any choice of constants y_{0}, \ldots, y_{n-1}, the IVP has a unique solution $y(x)$ on I.

Put differently, we're guaranteed to have a solution exist, and it is the only one there is!

Homogeneous Equations

We'll consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

and assume that each a_{i} is continuous and a_{n} is never zero on the interval of interest.

Theorem: If $y_{1}, y_{2}, \ldots, y_{k}$ are all solutions of this homogeneous equation on an interval l, then the linear combination

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{k} y_{k}(x)
$$

is also a solution on I for any choice of constants c_{1}, \ldots, c_{k}.
This is called the principle of superposition.

Corollaries

(i) If y_{1} solves the homogeneous equation, the any constant multiple $y=c y_{1}$ is also a solution.
(ii) The solution $y=0$ (called the trivial solution) is always a solution to a homogeneous equation.

Big Questions:

- Does an equation have any nontrivial solution(s), and
- since y_{1} and $c y_{1}$ aren't truly different solutions, what criteria will be used to call solutions distinct?

Linear Dependence

Definition: A set of functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ are said to be linearly dependent on an interval $/$ if there exists a set of constants $c_{1}, c_{2}, \ldots, c_{n}$ with at least one of them being nonzero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } \quad x \text { in } l .
$$

A set of functions that is not linearly dependent on I is said to be linearly independent on I.

Note that choosing all c's equal to zero will alleys mate that sum zero. Linear dependence means it can be done with at least one $c \neq 0$

Example: A linearly Dependent Set

The functions $f_{1}(x)=x^{2}, f_{2}(x)=4 x$, and $f_{3}(x)=x-x^{2}$ are linearly dependent on $I=(-\infty, \infty)$.
we need to show that then are numbers c_{1}, c_{2}, c_{3} not all zero such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f(3)=0 \text { for all } x \text { in } I
$$

Consider $C_{1}=1, C_{2}=\frac{-1}{4}, C_{3}=1$. Then at least one is nonzero (they all are ronzero!).

Note that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+c_{3} f_{3}(x)=
$$

$$
\begin{aligned}
& 1 x^{2}+\left(\frac{-1}{4}\right) 4 x+1\left(x-x^{2}\right)= \\
& x^{2}-x+x-x^{2}=0 \quad \text { for all } x \text { in } \\
& \quad(-\infty, \infty) .
\end{aligned}
$$

* Note $f_{1}(x)=x^{2}, f_{2}(x)=4 x, f_{3}(x)=x-x^{2}$

Observe

$$
c_{1} x^{2}+c_{2}(4 x)+c_{3}\left(x-x^{2}\right)=0
$$

It's clear that this will hold whenever

$$
c_{1}=c_{3} \text { and } c_{2}=\frac{-1}{4} c_{3}
$$

Example: A linearly Independent Set

The functions $f_{1}(x)=\sin x$ and $f_{2}(x)=\cos x$ are linearly independent on $I=(-\infty, \infty)$.
we con show that if $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all x in I, then it must be that $c_{1}=c_{2}=0$.

Suppose $c_{1} f_{1}(x)+c_{2} f_{2}(x)=0$ for all red x

$$
c_{1} \sin x+c_{2} \cos x=0
$$

This has to hold when $x=0$. When $x=0$, the equation is

$$
c_{1} \sin (0)+c_{2} \cos (0)=0
$$

$$
C_{1}(0)+C_{2}(1)=0 \Rightarrow C_{2}=0
$$

The equation also. has to hold when $x=\pi / 2$. when $x=\frac{\pi}{2}$, the equation is

$$
\begin{aligned}
c_{1} \sin \left(\frac{\pi}{2}\right)+0 \cdot \cos \frac{\pi}{2} & =0 \\
c_{1}(1)=0 \Rightarrow c_{1} & =0
\end{aligned}
$$

Both C's must be zero. f_{1} and f_{2} are linearly in dependent.

Definition of Wronskian

Let $f_{1}, f_{2}, \ldots, f_{n}$ posses at least $n-1$ continuous derivatives on an interval I. The Wronskian of this set of functions is the determinant

$$
W\left(f_{1}, f_{2}, \ldots, f_{n}\right)(x)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} & \cdots & f_{n}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

(Note that, in general, this Wronskian is a function of the independent variable x.)

Determinants

If A is a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then its determinant

$$
\operatorname{det}(A)=a d-b c
$$

If A is a 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then its determinant
$\operatorname{det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Determine the Wronskian of the Functions

$$
f_{1}(x)=\sin x, \quad f_{2}(x)=\cos x
$$

2 functions, the matrix will be 2×2.

$$
\begin{aligned}
& f_{1}^{\prime}(x)=\cos x \quad f_{2}^{\prime}(x)=-\sin x \\
& W\left(f_{1}, f_{2}\right)(x)=\left|\begin{array}{cc}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
\sin x & \cos x \\
\cos x & -\sin x
\end{array}\right| \\
& \\
& =\sin x(-\sin x)-\cos x(\cos x)
\end{aligned}
$$

$$
\begin{aligned}
& =-\sin ^{2} x-\cos ^{2} x \\
& =-\left(\sin ^{2} x+\cos ^{2} x\right)=-1 \\
& W\left(f_{1}, f_{2}\right)(x)=-1
\end{aligned}
$$

Determine the Wronskian of the Functions

$$
f_{1}(x)=x^{2}, \quad f_{2}(x)=4 x, \quad f_{3}(x)=x-x^{2}
$$

3 functions, the matrix will be 3×3

$$
\begin{aligned}
& W\left(f_{1}, f_{2}, f_{3}\right)(x)=\left|\begin{array}{ccc}
f_{1} & f_{2} & f_{3} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
f_{1}^{\prime \prime} & f_{2}^{\prime \prime} & f_{3}^{\prime \prime}
\end{array}\right|=\left|\begin{array}{ccc}
x^{2} & 4 x & x-x^{2} \\
2 x & 4 & 1-2 x \\
2 & 0 & -2
\end{array}\right| \\
& =x^{2}\left|\begin{array}{cc}
4 & 1-2 x \\
0 & -2
\end{array}\right|-4 x\left|\begin{array}{cc}
2 x & 1-2 x \\
2 & -2
\end{array}\right|+\left(x-x^{2}\right)\left|\begin{array}{cc}
2 x & 4 \\
2 & 0
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =x^{2}(4(-2)-0(1-2 x))-4 x(2 x(-2)-2(1-2 x))+\left(x-x^{2}\right)(2 x \cdot 0-2 \cdot 4) \\
& =x^{2}(-8)-4 x(-4 x-2+4 x)+\left(x-x^{2}\right)(-8) \\
& =-8 x^{2}+8 x-8 x+8 x^{2} \\
& =0 \quad W\left(f_{1}, f_{2}, f_{3}\right)(x)=0
\end{aligned}
$$

Theorem (a test for linear independence)

Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on I.

If $y_{1}, y_{2}, \ldots, y_{n}$ are n solutions of the linear homogeneous $n^{\text {th }}$ order equation on an interval I, then the solutions are linearly independent on I if and only if $W\left(y_{1}, y_{2}, \ldots, y_{n}\right)(x) \neq 0$ for 1 each x in I.

[^0]Determine if the functions are linearly dependent or independent:

$$
y_{1}=x^{2}, \quad y_{2}=x^{3} \quad I=(0, \infty)
$$

we con use the Wronskion.

$$
\begin{aligned}
W\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right| \\
& =x^{2}\left(3 x^{2}\right)-(2 x)\left(x^{3}\right)=3 x^{4}-2 x^{4}=x^{4}
\end{aligned}
$$

$$
w\left(y_{1}, y_{2}\right)(x)=x^{4}
$$

This is nonzero for every x in $(0, \infty)$. $W \neq 0$ the functions are linearly independent.

Fundamental Solution Set

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

[^0]: ${ }^{1}$ For solutions of one linear homogeneous ODE, the Wronskian is either always zero or is never zero.

