February 13 Math 3260 sec. 56 Spring 2018

Section Section 1.9: The Matrix for a Linear Transformation

Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. There exists a unique $m \times n$ matrix A such that

$$
T(\mathbf{x})=A \mathbf{x} \quad \text { for every } \quad \mathbf{x} \in \mathbb{R}^{n} .
$$

Moreover, the $j^{\text {th }}$ column of the matrix A is the vector $T\left(\mathbf{e}_{j}\right)$, where \mathbf{e}_{j} is the $j^{\text {th }}$ column of the $n \times n$ identity matrix I_{n}. That is,

$$
A=\left[\begin{array}{llll}
T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right] .
$$

The matrix A is called the standard matrix for the linear transformation T.

One to One, Onto
Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each \mathbf{b} in \mathbb{R}^{m} is the image of at least one \mathbf{x} in \mathbb{R}^{n}-ie. if the range of T is all of the codomain. If $T(\vec{x})=A \vec{x} \quad T$ is ont if
$A \vec{x}=\vec{b}$ is consistent for every \vec{b} in \mathbb{R}^{m}.

Definition: A mapping $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be one to one if each \mathbf{b} in \mathbb{R}^{m} is the image of at most one \mathbf{x} in \mathbb{R}^{n}.
T is one one if $T(\vec{x})=T(\vec{y})$ if and only If $\vec{x}=\vec{y}$. If $T(\vec{x})=A \vec{x}$, the T is one to one If $A \vec{x}=\vec{b}$ has no free variables.

Determine if the transformation is one to one, onto, neither or both.

$$
T(\mathbf{x})=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3
\end{array}\right] \mathbf{x} .
$$

$T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$
Is T ore to one? If $A \vec{x}=\vec{b}$ is consistent, are thee free vaichles? If $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$
$A \vec{x}=\vec{b}$ has augmented matrix

$$
\left[\begin{array}{llll}
1 & 0 & 2 & b_{1} \\
0 & 1 & 3 & b_{2}
\end{array}\right]
$$

This is on reef. 2 pivot columns of 3 variobler so then is a free variable.
T is not one to one.
Is T onto? Is $\vec{A} \vec{x}=\vec{b}$ consisdet for every \vec{b} in \mathbb{R}^{2} ?

$$
\left[\begin{array}{llll}
1 & 0 & 2 & b_{1} \\
0 & 1 & 3 & b_{2}
\end{array}\right]
$$

The last colon cant be a pivot column for any choice of b_{1}, b_{2}.

Hence T is onto.

Some Theorems
Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one to one if and only if the homogeneous equation $T(\mathbf{x})=\mathbf{0}$ has only the trivial solution.

Recall that for any lina transformation

$$
T(\overrightarrow{0})=\overrightarrow{0} .
$$

If T is one th one, then clearly $T(\vec{x})=\overrightarrow{0}$ has only the trivial solution.
Suppose $T(\vec{x})=\overrightarrow{0}$ has only the trivial solution.
Let $T(\vec{x})=T(\vec{y})$ for some \vec{x}, \vec{y} in \mathbb{R}^{n}.

Since T is line,

$$
\begin{gathered}
T(\vec{x})-T(\vec{y})=\overrightarrow{0} \\
T(\vec{x}-\vec{y})=\overrightarrow{0}
\end{gathered}
$$

Since the horogenears eger has only the trivial solution $\vec{x}-\vec{y}=\overrightarrow{0}$. Hence $\vec{x}=\vec{y}$ and T is one to one.

Some Theorems

Theorem: Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T. Then
(i) T is onto if and only if the columns of A span \mathbb{R}^{m}, and
(ii) T is one to one if and only if the columns of A are linearly independent.

Example
Let $T\left(x_{1}, x_{2}\right)=\left(x_{1}, 2 x_{1}-x_{2}, 3 x_{2}\right)$. Verify that T is one to one. Is T onto?
$T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ we can build the stenderd
matrix $A, \quad A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]$

$$
\begin{aligned}
T\left(\vec{e}_{1}\right) & =T(1,0)=(1,2 \cdot 1-0,3.0)=(1,2,0) \\
T\left(\vec{e}_{2}\right) & =T(0,1)=(0,2 \cdot 0-1,3.1)=(0,-1,3) \\
A & =\left[\begin{array}{cc}
1 & 0 \\
2 & -1 \\
0 & 3
\end{array}\right] \quad A \rightarrow \operatorname{rret}^{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

The colmar of A are linearly independent. Hence T is one to one.

To dethrone if T is onto, we can conside $A \vec{x}=\vec{b}$ for arbitrary $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ in \mathbb{R}^{3}.

An augment matrix is

$$
\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
2 & -1 & b_{2} \\
0 & 3 & b_{3}
\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{ccl}
1 & 0 & b_{1} \\
0 & -1 & b_{2}-2 b_{1} \\
0 & 0 & b_{3}+3 b_{2}-6 b_{1}
\end{array}\right]
$$

T is not cato. $A \vec{x}=\vec{b}$ is only consistent

$$
\text { if } \quad b_{3}+3 b_{2}-6 b_{1}=0
$$

Section 2.1: Matrix Operations

Recall the convenient notaton for a matrix A

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right] .
$$

Here each column is a vector \mathbf{a}_{j} in \mathbb{R}^{m}. We'll use the additional convenient notation to refer to A by entries

$$
A=\left[a_{i j}\right] .
$$

$a_{i j}$ is the entry in row i and column j.
Main Diagonal: The main diagonal consist of the entries $a_{i i}$. A diagonal matrix is a square matrix $m=n$ for which all entries not on the main diagonal are zero.

Scalar Multiplication, Matrix Addition, \& Equality

 Scalar Multiplication: For $m \times n$ matrix $A=\left[a_{i j}\right]$ and scalar $c$$$
c A=\left[c a_{i j}\right] .
$$

Matrix Addition: For $m \times n$ matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$

$$
A+B=\left[a_{i j}+b_{i j}\right] .
$$

The sum of two matrices is only defined if they are of the same size.

Matrix Equality: Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal (i.e. $A=B$) provided

$$
a_{i j}=b_{i j} \text { for every } i=1, \ldots, m \text { and } j=1, \ldots, n .
$$

Example

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & 4 \\
7 & 0
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

Evaluate each expression or state why it fails to exist.
(a) $3 B=\left[\begin{array}{ll}-2(3) & 4(3) \\ 7(3) & 0(3)\end{array}\right]=\left[\begin{array}{cc}-6 & 12 \\ 21 & 0\end{array}\right]$

$$
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right], \quad B=\left[\begin{array}{cc}
-2 & 4 \\
7 & 0
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]
$$

$\begin{array}{ll}\text { (b) } A+B \\ \text { Both } \\ 2 \times 2\end{array}=\left[\begin{array}{ll}1+(-2) & -3+4 \\ -2+7 & 2+0\end{array}\right]=\left[\begin{array}{cc}-1 & 1 \\ 5 & 2\end{array}\right]$
(c) $C+A \quad C$ is 2×3 and A is 2×2. Theyru not the sam size, $C+A$ is not defined.

Theorem: Properties

The $m \times n$ zero matrix has a zero in each entry. We'll denote this matrix as O (or $O_{m, n}$ if the size is not clear from the context).

Theorem: Let A, B, and C be matrices of the same size and r and s be scalars. Then

$$
\begin{aligned}
\text { (i) } A+B=B+A & \text { (iv) } r(A+B)=r A+r B \\
\text { (ii) }(A+B)+C=A+(B+C) & \text { (v) }(r+s) A=r A+s A \\
\text { (iii) } A+O=A & \text { (vi) } r(s A)=(r s) A=(s r) A \\
& =s(r A)
\end{aligned}
$$

Matrix Multiplication

We know that for any $m \times n$ matrix A, the operation "multiply vectors in \mathbb{R}^{n} by $A^{\prime \prime}$ defines a linear transformation (from \mathbb{R}^{n} to \mathbb{R}^{m}).

We wish to define matrix multiplication in such a way as to correspond to function composition. Thus if

$$
S(\mathbf{x})=B \mathbf{x}, \quad \text { and } \quad T(\mathbf{v})=A \mathbf{v}
$$

then

$$
(T \circ S)(\mathbf{x})=T(S(\mathbf{x}))=A(B \mathbf{x})=(A B) \mathbf{x}
$$

