February 14 MATH 1112 sec. 54 Spring 2020

Trigonometric Functions of Acute Angles

For the acute angle θ in a right triangle with sides lengths opp, adj, and hyp, we defined the six trigonometric values of θ

$$
\begin{aligned}
\sin \theta=\frac{\text { opp }}{\text { hyp }}, & \text { read as "sine theta" } \\
\cos \theta=\frac{\text { adj }}{\text { hyp }}, & \text { read as "cosine theta" } \\
\tan \theta=\frac{\text { opp }}{\text { adj }}, & \text { read as "tangent theta" }
\end{aligned}
$$

$$
\begin{gathered}
\tan \theta=\frac{\mathrm{opp}}{\mathrm{adj}}, \quad \text { read as "tangent theta" } \\
\csc \theta=\frac{\text { hyp }}{\mathrm{opp}}=\frac{1}{\sin \theta}, \quad \text { read as "cosecant theta" } \\
\sec \theta=\frac{\text { hyp }}{\mathrm{adj}}=\frac{1}{\cos \theta}, \quad \text { read as "secant theta" } \\
\cot \theta=\frac{\mathrm{adj}}{\mathrm{opp}}=\frac{1}{\tan \theta}, \quad \text { read as "cotangent theta", }
\end{gathered}
$$

Some Key Trigonometric Values

We can construct $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ right triangles.

Equilateral

Square

$$
\begin{array}{ll}
\sin 60^{\circ}=\frac{\sqrt{3}}{2} & \sin 45^{\circ}=\frac{1}{\sqrt{2}} \\
\cos 60^{\circ}=\frac{1}{2} & \cos 45^{\circ}=\frac{1}{\sqrt{2}} \\
\tan 60^{\circ}=\sqrt{3} & \tan 45^{\circ}=1
\end{array}
$$

Some Key Trigonometric Values

Use the triangles to determine the six trigonometric values of the angles $30^{\circ}, 45^{\circ}$, and 60°. Those are $\frac{\pi}{6}, \frac{\pi}{4}$, and $\frac{\pi}{3}$, respectively.

Figure: An isosceles right triangle of leg length 1 (left), and half of an equilateral triangle of side length 2 (right).

Commit To Memory

It is to our advantage to remember the following:

$$
\begin{array}{lll}
\sin 30^{\circ}=\frac{1}{2}, & \sin 45^{\circ}=\frac{1}{\sqrt{2}}, & \sin 60^{\circ}=\frac{\sqrt{3}}{2} \\
\cos 30^{\circ}=\frac{\sqrt{3}}{2}, & \cos 45^{\circ}=\frac{1}{\sqrt{2}}, & \cos 60^{\circ}=\frac{1}{2} \\
\tan 30^{\circ}=\frac{1}{\sqrt{3}}, & \tan 45^{\circ}=1, & \tan 60^{\circ}=\sqrt{3}
\end{array}
$$

We'll use these to find some other trigonometric values. Still others will require a calculator.

Commit To Memory

These are the same trigonometric values stated in radians:

$$
\begin{array}{lll}
\sin \frac{\pi}{6}=\frac{1}{2}, & \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}, & \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2} \\
\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}, & \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}, & \cos \frac{\pi}{3}=\frac{1}{2} \\
\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}, & \tan \frac{\pi}{4}=1, & \tan \frac{\pi}{3}=\sqrt{3}
\end{array}
$$

We'll use these to find some other trigonometric values. Still others will require a calculator.

Question

The value $\sin 30^{\circ}+\tan 45^{\circ}=\quad \frac{1}{2}+1=\frac{3}{2}$
(a) 75°
(b) $\frac{2}{3}$
(c) $\frac{3}{2}$
(d) $\frac{\sqrt{3}+1}{3}$

Question

The following statements are true:

$$
\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} \quad \text { and } \quad \frac{\pi}{3}=2\left(\frac{\pi}{6}\right)
$$

True or False The value of $\cos \frac{\pi}{3}=2 \cos \frac{\pi}{6}$.
(a) True, and I'm confident.

$$
\cos \frac{\pi}{3}=\frac{1}{2}
$$

(b) True, but I'm not certain.
(c) False, and I'm confident.

$$
2 \cos \frac{\pi}{6}=2\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3}
$$

(d) False, but l'm not certain.

Calculator

Figure: Any scientific calculator will have built in functions for sine, cosine and tangent. (TI-84 shown)

Using a Calculator
Evaluate the following using a calculator. Round answers to three decimal places.

$$
\begin{aligned}
& \sin 16^{\circ}=0.276 \\
& \sec 78.3^{\circ}=\frac{1}{\cos \left(78.3^{\circ}\right)}=4.931 \\
& \tan \left(\frac{2 \pi}{7}\right)=1.254
\end{aligned}
$$

Application Example

Before cutting down a dead tree, you wish to determine its height. From a horizontal distance of 40 ft , you measure the angle of elevation from the ground to the top of the tree to be 61°. Determine the tree height to the nearest $100^{\text {th }}$ of a foot.

Call the tree height h
Note that

$$
\begin{aligned}
& \tan 61^{\circ}=\frac{h}{40} \mathrm{ft} \\
& h=40 \tan 61^{\circ} \mathrm{ft} \\
& \approx 72.16 \mathrm{ft}
\end{aligned}
$$

Complementary Angles and Cofunction Identities

The two acute angles in a right triangle are complementary angles.

Figure: Note that for complementary angles θ and ϕ, the role of the legs (opposite versus adjacent) are interchanged.

Cofunction Identities

For any acute angle θ

$$
\begin{array}{ll}
\sin \theta=\cos \left(90^{\circ}-\theta\right) & \cos \theta=\sin \left(90^{\circ}-\theta\right) \\
\tan \theta=\cot \left(90^{\circ}-\theta\right) & \cot \theta=\tan \left(90^{\circ}-\theta\right) \\
\sec \theta=\csc \left(90^{\circ}-\theta\right) & \csc \theta=\sec \left(90^{\circ}-\theta\right)
\end{array}
$$

Stated in radians

$$
\begin{array}{ll}
\sin \theta=\cos \left(\frac{\pi}{2}-\theta\right) & \cos \theta=\sin \left(\frac{\pi}{2}-\theta\right) \\
\tan \theta=\cot \left(\frac{\pi}{2}-\theta\right) & \cot \theta=\tan \left(\frac{\pi}{2}-\theta\right) \\
\sec \theta=\csc \left(\frac{\pi}{2}-\theta\right) & \csc \theta=\sec \left(\frac{\pi}{2}-\theta\right)
\end{array}
$$

These equations define what are called cofunction identities.

Question

Suppose θ is an acute angle such that $\sin \theta=0.334$. Which of the following is true?
(a) $\sin \left(\frac{\pi}{2}-\theta\right)=1-0.334$
(b) $\cos \left(\frac{\pi}{2}-\theta\right)=0.334$
$\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$
(c) $\csc \left(\frac{\pi}{2}-\theta\right)=0.334$
(d) $\csc \theta=\frac{1}{1-0.334}$
(e) There's not enough information to determine whether any of the above is true.

