February 14 MATH 1112 sec. 54 Spring 2020 Trigonometric Functions of Acute Angles

For the acute angle θ in a right triangle with sides lengths opp, adj, and hyp, we defined the six trigonometric values of θ

1990 1 00P $\sin \theta = \frac{\text{opp}}{\text{hyp}}$, read as "sine theta" $\cos \theta = \frac{\operatorname{adj}}{\operatorname{hyp}},$ read as "cosine theta" 60) $\tan \theta = \frac{\text{opp}}{\text{adi}},$ read as "tangent theta" $\csc \theta = \frac{\text{hyp}}{\text{opp}} = \frac{1}{\sin \theta}$, read as "cosecant theta" $\sec \theta = \frac{\text{hyp}}{\text{adi}} = \frac{1}{\cos \theta}$, read as "secant theta" $\cot \theta = \frac{\mathrm{adj}}{\mathrm{opp}} = \frac{1}{\mathrm{tan}\theta}$, read as "cotangent theta" February 12, 2020 1/14

Some Key Trigonometric Values

We can construct $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ right triangles.

Sin 45° = 1 $C_{35} 45^{\circ} = \int Z$ fa 45° = 1

Some Key Trigonometric Values

Use the triangles to determine the six trigonometric values of the angles 30° , 45° , and 60° . Those are $\frac{\pi}{6}$, $\frac{\pi}{4}$, and $\frac{\pi}{3}$, respectively.

Figure: An isosceles right triangle of leg length 1 (left), and half of an equilateral triangle of side length 2 (right).

4 D b 4 A b

Commit To Memory

It is to our advantage to remember the following:

$$\sin 30^{\circ} = \frac{1}{2}, \qquad \sin 45^{\circ} = \frac{1}{\sqrt{2}}, \qquad \sin 60^{\circ} = \frac{\sqrt{3}}{2}$$
$$\cos 30^{\circ} = \frac{\sqrt{3}}{2}, \qquad \cos 45^{\circ} = \frac{1}{\sqrt{2}}, \qquad \cos 60^{\circ} = \frac{1}{2}$$
$$\tan 30^{\circ} = \frac{1}{\sqrt{3}}, \qquad \tan 45^{\circ} = 1, \qquad \tan 60^{\circ} = \sqrt{3}$$

We'll use these to find some other trigonometric values. Still others will require a calculator.

э

5/14

February 12, 2020

Commit To Memory

These are the same trigonometric values stated in radians:

$$\sin \frac{\pi}{6} = \frac{1}{2}, \qquad \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \qquad \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \qquad \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}, \qquad \cos \frac{\pi}{3} = \frac{1}{2}$$
$$\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}, \qquad \tan \frac{\pi}{4} = 1, \qquad \tan \frac{\pi}{3} = \sqrt{3}$$

We'll use these to find some other trigonometric values. Still others will require a calculator.

February 12, 2020

Question

The value $\sin 30^{\circ} + \tan 45^{\circ} = \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$ (a) 75° (b) $\frac{2}{3}$ 3 (C) $\sqrt{3} + 1$ (d)

> < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへぐ February 12, 2020 7/14

Question

The following statements are true:

$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$
 and $\frac{\pi}{3} = 2\left(\frac{\pi}{6}\right)$.

True or False The value of $\cos \frac{\pi}{3} = 2 \cos \frac{\pi}{6}$.

(a) True, and I'm confident.

(b) True, but I'm not certain.(c) False, and I'm confident.

(d) False, but I'm not certain.

 $C_{05} = \frac{1}{2}$ $C_{05} = \frac{1}{2}$ $C_{05} = 2\left(\frac{53}{2}\right) = 53$

Calculator

Figure: Any scientific calculator will have built in functions for sine, cosine and tangent. (TI-84 shown)

February 12, 2020

Using a Calculator

Evaluate the following using a calculator. Round answers to three decimal places.

$$\sin 16^{\circ} = 0.276 \qquad \text{or } e^{2}$$

$$\sec 78.3^{\circ} = \frac{1}{\cos(78.3^{\circ})} = 4.931$$

$$\tan\left(\frac{2\pi}{7}\right) = 1.254 \qquad \text{cost}^{\circ}$$

<ロト <回 > < 回 > < 回 > < 回 > … 回

Application Example

Before cutting down a dead tree, you wish to determine its height. From a horizontal distance of 40 ft, you measure the angle of elevation from the ground to the top of the tree to be 61° . Determine the tree height to the nearest 100^{th} of a foot.

Complementary Angles and Cofunction Identities The two acute angles in a right triangle are complementary angles.

Figure: Note that for complementary angles θ and ϕ , the role of the legs (opposite versus adjacent) are interchanged.

February 12, 2020 12/14

Cofunction Identities

For any acute angle $\boldsymbol{\theta}$

$$\sin \theta = \cos(90^\circ - \theta)$$
 $\cos \theta = \sin(90^\circ - \theta)$ $\tan \theta = \cot(90^\circ - \theta)$ $\cot \theta = \tan(90^\circ - \theta)$ $\sec \theta = \csc(90^\circ - \theta)$ $\csc \theta = \sec(90^\circ - \theta)$

Stated in radians

$$\sin \theta = \cos \left(\frac{\pi}{2} - \theta\right) \qquad \qquad \cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$$
$$\tan \theta = \cot \left(\frac{\pi}{2} - \theta\right) \qquad \qquad \cot \theta = \tan \left(\frac{\pi}{2} - \theta\right)$$
$$\sec \theta = \csc \left(\frac{\pi}{2} - \theta\right) \qquad \qquad \csc \theta = \sec \left(\frac{\pi}{2} - \theta\right)$$

These equations define what are called **cofunction identities**.

Question

Suppose θ is an acute angle such that $\sin \theta = 0.334$. Which of the following is true?

(a)
$$\sin\left(\frac{\pi}{2} - \theta\right) = 1 - 0.334$$

(b) $\cos\left(\frac{\pi}{2} - \theta\right) = 0.334$
(c) $\csc\left(\frac{\pi}{2} - \theta\right) = 0.334$
(d) $\csc\theta = \frac{1}{1 - 0.334}$

(e) There's not enough information to determine whether any of the above is true.

February 12, 2020

э