February 14 Math 1190 sec. 62 Spring 2017

Section 2.2: The Derivative as a Function

Definition: Let f be a function. The *derivative* of f is the function denoted f' defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

for each x in the domain of f for which the limit exists. f' is read as "f prime."

Remarks:

- if f(x) is a function of x, then f'(x) is a new function of x (called the derivative of f)
- ▶ The number f'(c) (if it exists) is the slope of the curve and of the tangent line to the curve y = f(x) at the point (c, f(c))
- f'(c) is the rate of change of the function f at c.

Definition: A function f is said to be *differentiable* at c if f'(c) exists. It is called *differentiable* on an open interval I if it is differentiable at each point in I.

2/66

Failure to be Differentiable

We saw that the domain of $f(x) = \sqrt{x-1}$ is $[1,\infty)$ whereas the domain of its derivative $f'(x) = \frac{1}{2\sqrt{x-1}}$ was $(1,\infty)$. Hence f is not differentiable at 1.

Another Example: Show that y = |x| is not differentiable at zero.

Let
$$f(x) = |x|$$
, $f(0) = |0| = 0$, $f(0+h) = |0+h| = |h|$

1A: $f(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$

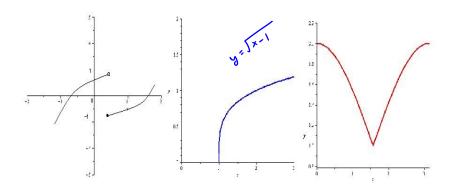
= $\lim_{h \to 0} \frac{|h| - 0}{h} = \lim_{h \to 0} \frac{|h|}{h}$

$$\int_{h\to 0^+} \frac{|h|}{h} = \int_{h\to 0^+} \frac{h}{h}$$

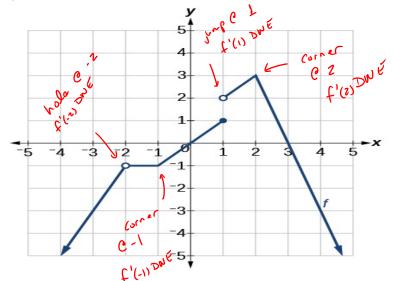
$$= \lim_{h\to 0^+} |= 1$$

So f'(0) DNE when f(x) = 1x).

Failure to be differentiable: Discontinuity, Vertical tangent, or Corner/Cusp



Example: Identify the points were *f* is not differentiable.



Theorem

Differentiability implies continuity.

That is, if *f* is differentiable at *c*, then *f* is continuous at *c*. Note that the corner example shows that the converse of this is not true!

Questions

(1) True or False: Suppose that we know that f'(3) = 2. We can conclude that f is continuous at 3.

Different obility continuity.

(2) **True or False:** Suppose that we know that f'(1) does not exist. We can conclude that f is discontinuous at 1.

It may or may not be discontinuous. There could be a corner C X=1.

Section 2.3: The Derivative of a Polynomial; The Derivative of e^x

First some notation:

If y = f(x), the following notation are interchangeable:

$$f'(x) = y'(x) = y' = \frac{dy}{dx} = \frac{df}{dx} = \frac{d}{dx}f(x) = Df(x) = D_x f(x)$$

Leibniz Notation:
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$

You can think of D, or $\frac{d}{dx}$ as an "operator."

It acts on a function to produce a new function—its derivative. Taking a derivative is referred to as *differentiation*.

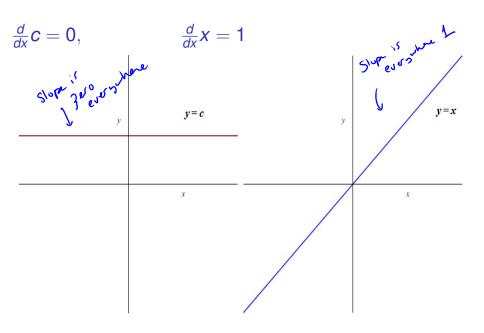
Some Derivative Rules

The derivative of a constant function is zero.

$$\frac{d}{dx}c=0$$

The derivative of the identity function is one.

$$\frac{d}{dx}x = 1$$



Evaluate Each Derivative

(a)
$$\frac{d}{dx}(-7) = 0$$
 are constants

(b)
$$\frac{d}{dx} 3\pi = \bigcirc$$

Question

$$\frac{d}{dx}\sqrt{2} =$$

- (a) $\sqrt{2}$
- (b) 1
- (c) 0

12 is a constant.

(d) $\frac{1}{2\sqrt{2}}$

The Power Rule

For positive integer n^1 ,

$$\frac{d}{dx}x^n = nx^{n-1}$$

This last one is called the **power rule**.

If
$$f(x) = x^n$$
 then $f'(x) = nx^{n-1}$

¹This rule turns out to hold for any real number n, though the proofs for more general cases require results yet to come.

Question

The power rule says that $\frac{d}{dx}x^n = nx^{n-1}$. It follows that

$$\frac{d}{dx}x^6 =$$

(a)
$$nx^5$$

(b)
$$6x^{n-1}$$

(c)
$$6x^5$$

$$(d)$$
 $6x$

The power rule (it ain't magic)

Use the binomial expansion

$$(x+h)^6 = x^6 + 6x^5h + 15x^4h^2 + 20x^3h^3 + 15x^2h^4 + 6xh^5 + h^6$$
 to show that $\frac{d}{dx}x^6 = 6x^5$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^{b} - x^{b}}{h}$$

$$= \lim_{h \to 0} \frac{x^{b} + 6x^{c}h + 15x^{d}h^{2} + 20x^{3}h^{3} + 15x^{3}h^{4} + 6x^{2}h^{4} +$$

More Derivative Rules

Assume f and g are differentiable functions and k is a constant.

Constant multiple rule:
$$\frac{d}{dx} kf(x) = kf'(x)$$

Sum rule:
$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x)$$

Difference rule:
$$\frac{d}{dx}(f(x) - g(x)) = f'(x) - g'(x)$$

The rules we have thus far allow us to find the derivative of any polynomial function.

Example: Evaluate Each Derivative

(a)
$$\frac{d}{dx}(x^4 - 3x^2) = \frac{d}{dx}x^4 - \frac{d}{dx}3x^2$$
$$= \frac{d}{dx}x^4 - 3\frac{d}{dx}x^2$$
$$= 4x^3 - 3(2x^1) = 4x^3 - 6x$$

(b)
$$\frac{d}{dx}(2x^3+3x^2-12x+1) =$$

$$= 2 \frac{d}{dx} x^{3} + 3 \frac{d}{dx} x^{2} - 12 \frac{d}{dx} x + \frac{d}{dx} 1$$

$$= 2 (3x^{2}) + 3 (2x') - 12 \cdot 1 + 0$$

$$= 6x^{2} + 6x - 12$$

Example

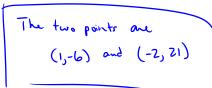
If $f(x) = 2x^3 + 3x^2 - 12x + 1$, find all points on the graph of f at which the slope of the graph is zero.

From the last example
$$f'(x) = 6x^2 + 6x - 12$$

If the slope of the graph $e'(c) = 6x^2 + 6x - 12$
then $f'(c) = 0$. Setting $f'(c) = 0$
 $6c^2 + 6c - 12 = 0 \Rightarrow 6(c^2 + c - 2) = 0$
 $6(c+2)(c-1) = 0 \Rightarrow c=1$

$$f(1) = 2 \cdot 1^{3} + 3 \cdot 1^{2} - 12 \cdot 1 + 1 = -6$$

$$f(-1) = 2(-1)^{3} + 3(-1)^{2} - 12 \cdot (-1) + 1 = 2$$



The Derivative of e^x

Consider a > 0 and $a \ne 1$. Let $f(x) = a^x$. Analyze the limit f'(0) and f'(x)

Note
$$f(0) = a^2 = 1$$
 and $f(0+n) = a^2 = a^n$

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{a^h - 1}{h} \quad \text{provided this}$$

$$\lim_{h \to 0} \frac{a^h - 1}{h} \quad \text{provided this}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{a \cdot a^h - a^k}{h}$$

$$= \lim_{n \to 0} \alpha^{x} \left(\frac{\alpha^{n} - 1}{n} \right)$$

$$= \lim_{n \to 0} \alpha^{x} \left(\frac{\alpha^{n} - 1}{n} \right)$$

$$= \lim_{n \to 0} \alpha^{x} \left(\frac{\alpha^{n} - 1}{n} \right)$$

$$= \lim_{n \to 0} \alpha^{x} \left(\frac{\alpha^{n} - 1}{n} \right)$$

$$= \alpha \left(\lim_{h \to 0} \frac{\alpha^{h} - 1}{h} \right)$$

Note this is a constant

ie a constant times f(x)

The Derivative of e^x

Definition: The number e is defined² by the property

$$\lim_{h\to 0}\frac{e^h-1}{h}=1.$$

It follows that

Theorem: $y = e^x$ is differentiable (at all real numbers) and

$$\frac{d}{dx}e^{x}=e^{x}.$$

Numerically, $e \approx 2.718282$.

²This is one of several mutually consistent ways to defined this number.

Question

Evaluate the derivative of $f(x) = 4x^6 - 2e^x$

(a)
$$f'(x) = 24x^5 - 2xe^{x-1}$$

(b)
$$f'(x) = 6x^5 - e^x$$

(c)
$$f'(x) = 24x^5 - 2e^{x-1}$$

$$(d) f'(x) = 24x^5 - 2e^x$$

* x has constant
power 1, the
have is variable

February 14, 2017 25 / 66

Section 2.4: Differentiating a Product or Quotient; Higher Order Derivatives

Motivating Example: Evaluate the derivative

$$\frac{d}{dx}[x^{3}(2x^{2}-6x+17)] \qquad \text{Distribute first}$$

$$= \frac{d}{dx}\left(2x^{5}-6x^{4}+17x^{3}\right)$$

$$= 10x^{4}-24x^{3}+51x^{2}$$

Derivative of A Product

Now consider evaluating the derivative

$$\frac{d}{dx}[(3x^5-2x^2+x)(x^3-2x^2+x-1)]$$

We can take the Same approach here, but the algebre is more tedious.

Derivative of A Product

Theorem: (Product Rule) Let f and g be differentiable functions of x. Then the product f(x)g(x) is differentiable. Moreover

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x).$$

This can be stated using Leibniz notation as

$$\frac{d}{dx}[f(x)g(x)] = \frac{df}{dx}g(x) + f(x)\frac{dg}{dx}.$$

Example

Compute $\frac{d}{dx}x^5$ using the product rule with $f(x) = x^2$ and $g(x) = x^3$. Compare this with the result from the power rule on x^5 .

By the power rule
$$\frac{d}{dx} x^5 = 5x^4$$
.

Using the product rule
$$\frac{d}{dx} x^5 = \frac{d}{dx} \left[x^2 \cdot x^3 \right] = \left(\frac{d}{dx} x^2 \right) x^3 + x^2 \left(\frac{d}{dx} x^3 \right)$$

$$= \left(2x^4 \right) x^3 + x^2 \left(3x^2 \right)$$

$$= 2x^4 + 3x^4 = 5x^4$$

Evaluate
$$\frac{d}{dx}[(3x^5-2x^2+x)(x^3-2x^2+x-1)]$$

Let
$$f(x) = 3x^3 - 2x^2 + x$$
, $f'(x) = 15x^4 - 4x + 1$
 $g(x) = x^3 - 2x^2 + x - 1$, $g'(x) = 3x^2 - 4x + 1$

$$\frac{d}{dx} \left[(3x^{5} - 2x^{2} + x) (x^{3} - 2x^{2} + x - 1) \right]$$

=
$$(15x^{4}-4x+1)(x^{3}-2x^{2}+x-1)+(3x^{5}-2x^{2}+x)(3x^{2}-4x+1)$$

Example

Evaluate $\frac{d}{dx}e^{2x}$ using the product rule.

Note
$$e^{2x} = e^{x+x} = e^{x} = e^{x}$$

So $\frac{d}{dx} \left[e^{2x} \right] = \frac{d}{dx} \left[e^{x} \cdot e^{x} \right]$

$$= \left(\frac{d}{dx} \cdot e^{x} \right) + e^{x} \cdot \left(\frac{d}{dx} \cdot e^{x} \right)$$

$$= e^{x} \cdot e^{x} + e^{x} \cdot e^{x} = e^{x} + e^{x} = 2e^{x}$$

Question

$$\frac{d}{dx} [f(x)g(x)] = f'(x)g(x) + f(x)g'(x) ; \frac{d}{dx} [e^{2x}] = 2e^{2x}$$

Evaluate f'(x) where $f(x) = 3x^4e^{2x}$.

(a)
$$f'(x) = 6x^4e^{2x}$$

(b)
$$f'(x) = 12x^3e^{2x} + 6x^4e^{2x}$$

(c)
$$f'(x) = 24x^3e^{2x}$$

(d)
$$f'(x) = 3x^4e^{2x} + 12x^3e^{2x}$$

The Derivative of a Quotient

Theorem (Quotient Rule) Let f and g be differentiable functions of x. Then on any interval for which $g(x) \neq 0$, the ratio $\frac{f(x)}{g(x)}$ is differentiable. Moreover

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}.$$

This can be stated using Leibniz notation as

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{\frac{df}{dx}g(x) - f(x)\frac{dg}{dx}}{[g(x)]^2}.$$

A Special Case

An immediate consequence of this is that

$$\frac{d}{dx}\left(\frac{1}{g(x)}\right) = -\frac{g'(x)}{[g(x)]^2}.$$

Evaluate
$$\frac{d}{dx}x^{-1} = \frac{d}{dx}\frac{1}{x}$$

$$= -\frac{1}{(x)^2} = \frac{-1}{x^2} = -x^{-2}$$
This is rule possession.

Example

Use the quotient rule to show that for positive integer n^3

$$\frac{d}{dx}x^{-n} = -nx^{-n-1}$$

$$\frac{d}{dx}\tilde{x}^{n} = \frac{d}{dx}\frac{1}{x^{n}}$$

$$for g(x) = x^{n}, g(x) = nx^{n-1}$$

$$and (g(x))^{2} = (x^{n})^{2} = x^{n}$$

$$= -\frac{nx^{n-1}}{(x^{n})^{2}}$$

$$= -\frac{nx^{n-1}}{(x^{n})^{2}}$$

³Note that this shows that the power rule works for both positive and negative integers.

$$= -N \times \frac{n-1-2n}{x}$$

$$= -N \times \frac{n-1}{x}$$
That is, $\frac{d}{dx} \times \frac{n}{x} = -N \times \frac{n-1}{x}$
For example $\frac{d}{dx} \times \frac{n}{x} = -N \times \frac{n-1}{x}$

Question

$$\frac{d}{dx} \frac{1}{Q(x)} = - \frac{Q'(x)}{Q(x)}$$

Evaluate $\frac{d}{dx}e^{-x} = \frac{d}{dx}\frac{1}{e^x}$

$$\frac{d}{dx} \frac{1}{e^x} : - \frac{e^x}{(e^x)^2} : - \frac{e^x}{e^{2x}}$$

$$(a)$$
 $-e^{-x}$

(b)
$$a^{-x}$$

(c)
$$\frac{1}{2^x}$$

(d) can't be determined without more information

