February 14 Math 1190 sec. 62 Spring 2017

Section 2.2: The Derivative as a Function

Definition: Let f be a function. The derivative of f is the function
denoted f’ defined by

F(x) = ,L@O f(x + hg — f(x)

for each x in the domain of f for which the limit exists.
f'is read as "f prime.”
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Remarks:

» if f(x) is a function of x, then f'(x) is a new function of x (called
the derivative of f)

» The number f'(c) (if it exists) is the slope of the curve and of the
tangent line to the curve y = f(x) at the point (¢, f(c))

» f'(c) is the rate of change of the function f at c.

Definition: A function f is said to be differentiable at c if f'(c) exists. It
is called differentiable on an open interval / if it is differentiable at each
pointin /.
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Failure to be Differentiable

We saw that the domain of f(x) = vx — 1 is [1, c0) whereas the
domain of its derivative f'(x) = 2\/% was (1,00). Hence f is not
differentiable at 1.

Another Example: Show that y = |x| is not differentiable at zero.
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Failure to be differentiable: Discontinuity, Vertical
tangent, or Corner/Cusp
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Example: Identify the points were f is not differentiable.
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Theorem

Differentiability implies continuity.

That is, if f is differentiable at ¢, then f is continuous at ¢. Note that the
corner example shows that the converse of this is not true!
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Questions

(1 )@or False: Suppose that we know that f/(3) = 2. We can
conclude that f is continuous at 3.
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(2) True o: Suppose that we know that /(1) does not exist. We
can conclude that f is discontinuous at 1.
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Section 2.3: The Derivative of a Polynomial; The
Derivative of e*

First some notation:

If y = f(x), the following notation are interchangeable:

fx)=y'(x)=y = g}; = g; = i(f(x) = Df(x) = Dyf(x)

Leibniz Notation: lim ﬂ = Q
Ax—0 AX dx

You can think of D, or ;’( as an "operator.”

It acts on a function to produce a new function—its derivative.
Taking a derivative is referred to as differentiation.
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Some Derivative Rules

The derivative of a constant function is zero.
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The derivative of the identity function is one.
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Evaluate Each Derivative
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The Power Rule

For positive integer n',
9y
ax
This last one is called the power rule.
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"This rule turns out to hold for any real number n, though the proofs for more
general cases require results yet to come.
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Question

The power rule says that d%x” = nx"~1. It follows that

(2) nx® A=G, so w-1zb-l=S
(b) 6x"1

@ 6x°

(d) 6x
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The power rule (it ain’t magic)
Use the binomial expansion

(x + h)® = x® + 6x°h + 15x*h? 4 20x3h® + 15x2h* 4 6xh° + K®

to show that & x5 = 6x5. Poe fin= "
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More Derivative Rules

Assume f and g are differentiable functions and k is a constant.
: d )
Constant multiple rule: ax kf(x) = kf'(x)
d . /
Sum rule: ax (f(x)+9(x)) =f(x)+ 9 (x)

Difference rule:  — (f(x) — g(x)) = f'(x) — g'(x)

The rules we have thus far allow us to find the derivative of any
polynomial function.
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Example: Evaluate Each Derivative

d
(a) a(x4—3x2): f‘;)( - 2%3)(

February 14, 2017 19/66



ax

d (2x3+3x2—12x4+1) =

"

2 3x

2(3)(1.3 {-3(2)(‘)"2.\ + 0

T wbx -\

d d
s 3dvondre kL

February 14, 2017

20/66



Example
If f(x) = 2x3 + 3x% — 12x + 1, find all points on the graph of f at which
the slope of the graph is zero.
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The Derivative of &*
Consider a > 0 and a # 1. Let f(x) = a*. Analyze the limit f/(0) and
F'(x)
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The Derivative of &

Definition: The number e is defined? by the property

h
. e’ —1
lim =1.
h—0

It follows that

Theorem: y = e* is differentiable (at all real numbers) and

2This is one of several mutually consistent ways to defined this number.
Numerically, e ~ 2.718282.
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Question

Evaluate the derivative of ~ f(x) = 4x5—2¢* pre”

X 9(“ has  Constant
P N , Yhe

! _ 5 —1
(@) f/(x) = 24x5 — 2xe oo 16 VasianL

(b) f(x)=6x°— e :
x Expe N i

(c) f'(x) = 24x5 — 2gX~1 ex Jonichle pset
ConC ¥ ¥ st

X
F/(x) = 24x5 — 2€¥ : e
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Section 2.4: Differentiating a Product or Quotient;
Higher Order Derivatives

Motivating Example: Evaluate the derivative

d
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Derivative of A Product
Now consider evaluating the derivative

;([(3X5_2X2+X)(X3—2x2+x—1 )]
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Derivative of A Product

Theorem: (Product Rule) Let f and g be differentiable functions of x.

Then the product f(x)g(x) is differentiable. Moreover

d / /
2 [(X)g(x)] = F(x)g(x) + (x)g (x).

This can be stated using Leibniz notation as

o d

d
10900 = 2900 + () 2
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Example

Compute Z x5 using the product rule with f(x) = x2 and g(x) = x.

Compare this with the result from the power rule on x°.
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Example % (£ wy}: £l 5t + fo 3'06)

Evaluate ;([(Sx5—2x2+x)(x3—2x2+x—1)]
' gyt uy e\
Lx Py = 3¢-2¢ + X £00 = 8%
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Example
Evaluate %ezx using the product rule.
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Question

Evaluate f'(x) where f(x) = 3x*&?~.
(a) f'(x) = 6x*e*

f'(x) = 12x3e>* + 6x*e*

(c) f'(x) = 24x3e*¥

(d) f(x) =3x*e* + 12x%e>
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The Derivative of a Quotient

Theorem (Quotient Rule) Let f and g be differentiable functions of x.
Then on any interval for which g(x) # 0, the ratio (( )) is differentiable.

Moreover d (f(x)) _ F(x)g(x) — f(x)g'(x)
dx g(X) - [g(X)]2 .

This can be stated using Leibniz notation as

d (f(x)) _ I g(x) - f(x) %
dx \ g(x) [g(x)]?
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A Special Case

An immediate consequence of this is that

a1y dx
ax <9(X)> [9(x)]?°
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Example
Use the quotient rule to show that for positive integer n®
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3Note that this shows that the power rule works for both positive and negative
integers.
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Question - — - -—
M gl (%"‘)3

d , d 1

Evaluate ae = ax &
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(d) can’t be determined without more information
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