February 14 Math 1190 sec. 63 Spring 2017

Section 2.2: The Derivative as a Function

Definition: Let f be a function. The derivative of f is the function denoted f^{\prime} defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

for each x in the domain of f for which the limit exists. f^{\prime} is read as " f prime."

Remarks:

- if $f(x)$ is a function of x, then $f^{\prime}(x)$ is a new function of x (called the derivative of f)
- The number $f^{\prime}(c)$ (if it exists) is the slope of the curve and of the tangent line to the curve $y=f(x)$ at the point $(c, f(c))$
- $f^{\prime}(c)$ is the rate of change of the function f at c.

Definition: A function f is said to be differentiable at c if $f^{\prime}(c)$ exists. It is called differentiable on an open interval / if it is differentiable at each point in I.

Failure to be Differentiable
We saw that the domain of $f(x)=\sqrt{x-1}$ is $[1, \infty)$ whereas the domain of its derivative $f^{\prime}(x)=\frac{1}{2 \sqrt{x-1}}$ was $(1, \infty)$. Hence f is not differentiable at 1 .

Another Example: Show that $y=|x|$ is not differentiable at zero.

$$
f(x)=|x|, \quad f(0)=|0|=0, \quad f(0+h)=|0+h|=|h|
$$

If it exists, then

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{|h|-0}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{|h|}{h} & =\lim _{h \rightarrow 0^{+}} \frac{h}{h} \quad|h|= \\
& =\lim _{h \rightarrow 0^{+}} \mid=1 \\
\lim _{h \rightarrow 0^{-}} \frac{|h|}{h} & =\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=\lim _{h \rightarrow 0^{-}}-1=-1
\end{aligned}
$$

Since these disagree, $\lim _{h \rightarrow 0} \frac{|h|}{h}$ DUE
That is, $f^{\prime}(0)$ DUE. $y=|x|$ is not differentiable at zero.

Failure to be differentiable: Discontinuity, Vertical tangent, or Corner/Cusp

Example: Identify the points were f is not differentiable.

Theorem

Differentiability implies continuity.

That is, if f is differentiable at c, then f is continuous at c. Note that the corner example shows that the converse of this is not true!

Questions
(1) Irue)or False: Suppose that we know that $f^{\prime}(3)=2$. We can conclude that f is continuous at 3 .

Differentiability implies continuity
(2) True or False. Suppose that we know that $f^{\prime}(1)$ does not exist. We can conclude that f is discontinuous at 1 .
f may or mag not be continuous © 1. we dort know.
It could have a corner there.

Section 2.3: The Derivative of a Polynomial; The Derivative of e^{x}

First some notation:
If $y=f(x)$, the following notation are interchangeable:

$$
f^{\prime}(x)=y^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

Leibniz Notation: $\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\frac{d y}{d x}$

You can think of D, or $\frac{d}{d x}$ as an "operator."
It acts on a function to produce a new function-its derivative. Taking a derivative is referred to as differentiation.

Some Derivative Rules

The derivative of a constant function is zero.

$$
\frac{d}{d x} c=0
$$

If $f(x)=c$ for constant c, then $f^{\prime}(x)=0$.
The derivative of the identity function is one.

$$
\begin{aligned}
\frac{d}{d x} x & =1 \\
\text { If } f(x)=x \text {, then } \quad f^{\prime}(x) & =1
\end{aligned}
$$

February 14, 2017

Evaluate Each Derivative

(a) $\frac{d}{d x}(-7)=0$

(b) $\frac{d}{d x} 3 \pi=0$

Question

$$
\frac{d}{d x} \sqrt{2}=
$$

(a) $\sqrt{2}$

$$
\begin{aligned}
& \sqrt{2} \text { is } \\
& \text { a constant }
\end{aligned}
$$

(b) 1

(d) $\frac{1}{2 \sqrt{2}}$

The Power Rule

For positive integer n^{1},

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

This last one is called the power rule.

$$
\text { If } f(x)=x^{n} \text { for positive integer } n, f^{\prime}(x)=n x^{n-1}
$$

${ }^{1}$ This rule turns out to hold for any real number n, though the proofs for more general cases require results yet to come.

Question

The power rule says that $\frac{d}{d x} x^{n}=n x^{n-1}$. It follows that

$$
\frac{d}{d x} x^{6}=
$$

(a) $n x^{5}$

$$
n=6 \text {, so } n-1=6-1=5
$$

(b) $6 x^{n-1}$
(c) $0 x^{5}$
(d) $6 x$

The power rule (it ain't magic)
Use the binomial expansion

$$
(x+h)^{6}=x^{6}+6 x^{5} h+15 x^{4} h^{2}+20 x^{3} h^{3}+15 x^{2} h^{4}+6 x h^{5}+h^{6}
$$

to show that $\frac{d}{d x} x^{6}=6 x^{5}$. Let $f(x)=x^{6}$

$$
\begin{aligned}
\frac{d}{d x} x^{6}=f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{6}-x^{6}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{6}+6 x^{5} h+15 x^{4} h^{2}+20 x^{3} h^{3}+15 x^{2} h^{4}+6 x h^{5}+h^{6}-x^{6}}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{K\left(6 x^{5}+15 x^{4} h+20 x^{3} h^{2}+15 x^{2} h^{3}+6 x h^{4}+h^{5}\right)}{k} \\
& =\lim _{h \rightarrow 0}\left(6 x^{5}+15 x^{4} h+20 x^{3} h^{2}+15 x^{2} h^{3}+6 x h^{4}+h^{5}\right) \\
& =6 x^{5}+0+0+0+0+0 \\
& =6 x^{5}
\end{aligned}
$$

More Derivative Rules

Assume f and g are differentiable functions and k is a constant.
Constant multiple rule: $\frac{d}{d x} k f(x)=k f^{\prime}(x)$

$$
\text { Sum rule: } \quad \frac{d}{d x}(f(x)+g(x))=f^{\prime}(x)+g^{\prime}(x)
$$

$$
\text { Difference rule: } \quad \frac{d}{d x}(f(x)-g(x))=f^{\prime}(x)-g^{\prime}(x)
$$

The rules we have thus far allow us to find the derivative of any polynomial function.

Example: Evaluate Each Derivative
(a)

$$
\begin{aligned}
\frac{d}{d x}\left(x^{4}-3 x^{2}\right) & =\frac{d}{d x} x^{4}-\frac{d}{d x}\left(3 x^{2}\right) \\
& =\frac{d}{d x} x^{4}-3 \frac{d}{d x} x^{2} \\
& =4 x^{3}-3\left(2 x^{1}\right)=4 x^{3}-6 x
\end{aligned}
$$

(b) $\frac{d}{d x}\left(2 x^{3}+3 x^{2}-12 x+1\right)=$

$$
\begin{aligned}
& 2 \frac{d}{d x} x^{3}+3 \frac{d}{d x} x^{2}-12 \frac{d}{d x} x+\frac{d}{d x} 1 \\
& =2\left(3 x^{2}\right)+3(2 x)-12(1)+0 \\
& =6 x^{2}+6 x-12
\end{aligned}
$$

Example
If $f(x)=2 x^{3}+3 x^{2}-12 x+1$, find all points on the graph of f at which the slope of the graph is zero. $\quad f^{\prime}(x)=6 x^{2}+6 x-12 \quad$ (last example)

If the graph of f is zero $c(c, f(c))$, then $f^{\prime}(c)=0$.
So we read to solve $f^{\prime}(c)=0=6 c^{2}+6 c-12$

$$
0=6\left(c^{2}+c-2\right)=6(c+2)(c-1) \Rightarrow c=-2 \text { or } c=1
$$

$$
\begin{aligned}
& f(1)=2 \cdot 1^{3}+3 \cdot 1^{2}-12 \cdot 1+1=-6 \\
& f(-2)=2(-2)^{3}+3(-2)^{2}-12(-2)+1=21
\end{aligned}
$$

There are 2 points

$$
(1,-6) \text { and }(-2,21)
$$

The Derivative of e^{x}
Consider $a>0$ and $a \neq 1$. Let $f(x)=a^{x}$. Analyze the limit $f^{\prime}(0)$ and $f^{\prime}(x)$

$$
\begin{aligned}
& f(0)=a^{0}=1, f(0+h)=a^{0+h}=a^{h} \\
& f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h} \quad \begin{array}{c}
\text { thisimt } \\
\text { does exist } \\
\text {, is the } \\
\text { number } f^{\prime}(x)
\end{array} \\
& f(x)=a^{x}, f(x+h)=a^{x+h}=a^{x} \cdot a^{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} a^{x}\left(\frac{a^{h}-1}{h}\right) \quad \text { his the }{ }^{\text {number }} \\
& =a^{x}\left(\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}\right)^{\prime} \\
& =f^{\prime}(0) a^{x}
\end{aligned}
$$

$\frac{d}{d x} a^{x}$ is a constant times a^{x}
If $f(x)=a^{x}$ then $f^{\prime}(x)=f^{\prime}(0) f(x)$

The Derivative of e^{x}

Definition: The number e is defined ${ }^{2}$ by the property

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

It follows that

Theorem: $y=e^{x}$ is differentiable (at all real numbers) and

$$
\frac{d}{d x} e^{x}=e^{x} .
$$

${ }^{2}$ This is one of several mutually consistent ways to defined this number. Numerically, $e \approx 2.718282$.

Question

Evaluate the derivative of $\quad f(x)=4 x^{6}-2 e^{x}$
Power function x^{n}
(a) $f^{\prime}(x)=24 x^{5}-2 x e^{x-1}$ variable base, constant power
(b) $f^{\prime}(x)=6 x^{5}-e^{x}$

Exponentid function a^{x}
(c) $f^{\prime}(x)=24 x^{5}-2 e^{x-1}$

Constant base, variable power
(d)) $f^{\prime}(x)=24 x^{5}-2 e^{x}$

Section 2.4: Differentiating a Product or Quotient;

 Higher Order DerivativesMotivating Example: Evaluate the derivative

$$
\frac{d}{d x}\left[x^{3}\left(2 x^{2}-6 x+17\right)\right]=\frac{d}{d x}\left[2 x^{5}-6 x^{4}+17 x^{3}\right]
$$

$$
=10 x^{4}-24 x^{3}+51 x^{2}
$$

Derivative of A Product
Now consider evaluating the derivative

$$
\frac{d}{d x}\left[\left(3 x^{5}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]
$$

we could do the same thing, distribute first, then tale the derivative.

Derivative of A Product

Theorem: (Product Rule) Let f and g be differentiable functions of x. Then the product $f(x) g(x)$ is differentiable. Moreover

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

This can be stated using Leibniz notation as

$$
\frac{d}{d x}[f(x) g(x)]=\frac{d f}{d x} g(x)+f(x) \frac{d g}{d x}
$$

Example

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}\left(x g(x)+f(x) g^{\prime}(x)\right.
$$

Compute $\frac{d}{d x} x^{5}$ using the product rule with $f(x)=x^{2}$ and $g(x)=x^{3}$. Compare this with the result from the power rule on x^{5}.

By the power rale $\frac{d}{d x} x^{5}=5 x^{4}$

$$
\begin{aligned}
\frac{d}{d x} x^{5}=\frac{d}{d x}\left[x^{2} \cdot x^{3}\right] & =\left(\frac{d}{d x} x^{2}\right) x^{3}+x^{2}\left(\frac{d}{d x} x^{3}\right) \\
& =(2 x) x^{3}+x^{2}\left(3 x^{2}\right) \\
& =2 x^{4}+3 x^{4}=5 x^{4}
\end{aligned}
$$

Example
Evaluate $\frac{d}{d x}\left[\left(3 x^{5}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]$
Let $f(x)=3 x^{5}-2 x^{2}+x, \quad f^{\prime}(x)=15 x^{4}-4 x+1$

$$
\begin{aligned}
& g(x)=x^{3}-2 x^{2}+x-1, \quad g^{\prime}(x)=3 x^{2}-4 x+1 \\
& \frac{d}{d x}\left[\left(3 x^{5}-2 x^{2}+x\right)\left(x^{3}-2 x^{2}+x-1\right)\right]=\frac{d}{d x}[f(x) g(x)] \\
& =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& =\left(15 x^{4}-4 x+1\right)\left(x^{3}-2 x^{2}+x-1\right)+\left(3 x^{5}-2 x^{2}+x\right)\left(3 x^{2}-4 x+1\right)
\end{aligned}
$$

Example
Evaluate $\frac{d}{d x} e^{2 x}$ using the product rule.

$$
\begin{aligned}
& e^{2 x}=e^{x+x}=e^{x} \cdot e^{x} \\
& \frac{d}{d x}\left[e^{2 x}\right]=\frac{d}{d x}\left[e^{x} \cdot e^{x}\right]=\left(\frac{d}{d x} e^{x}\right) e^{x}+e^{x}\left(\frac{d}{d x} e^{x}\right) \\
&=e^{x} \cdot e^{x}+e^{x} \cdot e^{x} \\
&=e^{2 x}+e^{2 x}=2 e^{2 x}
\end{aligned}
$$

Question

Evaluate $f^{\prime}(x)$ where $f(x)=3 x^{4} e^{2 x}$.
(a) $f^{\prime}(x)=6 x^{4} e^{2 x}$
(b) $f^{\prime}(x)=12 x^{3} e^{2 x}+6 x^{4} e^{2 x}$
(c) $f^{\prime}(x)=24 x^{3} e^{2 x}$
(d) $f^{\prime}(x)=3 x^{4} e^{2 x}+12 x^{3} e^{2 x}$

The Derivative of a Quotient

Theorem (Quotient Rule) Let f and g be differentiable functions of x. Then on any interval for which $g(x) \neq 0$, the ratio $\frac{f(x)}{g(x)}$ is differentiable. Moreover

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

This can be stated using Leibniz notation as

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\frac{d f}{d x} g(x)-f(x) \frac{d g}{d x}}{[g(x)]^{2}} .
$$

A Special Case

An immediate consequence of this is that

$$
\frac{d}{d x}\left(\frac{1}{g(x)}\right)=-\frac{g^{\prime}(x)}{[g(x)]^{2}}
$$

Evaluate $\frac{d}{d x} x^{-1}=\frac{d}{d x} \frac{1}{x}$

$$
g(x)=x, \quad g^{\prime}(x)=1
$$

Example
Use the quotient rule to show that for positive integer n^{3}

$$
\begin{aligned}
\frac{d}{d x} x^{-n} & =\frac{d}{d x} x^{-n}=-n x^{-n-1} \\
& =-\frac{n x^{n-1}}{\left(x^{n}\right)^{2}} \quad g_{0}(x)=x^{n}, \quad g^{\prime}(x)=n x^{n-1} \\
& =-\frac{n x^{n-1}}{x^{2 n}}
\end{aligned}
$$

${ }^{3}$ Note that this shows that the power rule works for both positive and negative integers.

$$
=-n x^{n-1-2 n}=-n x^{-n-1}
$$

which is
the sam power
rube
es.

$$
\frac{d}{d x} x^{-7}=-7 x^{-8}
$$

