February 14 Math 3260 sec. 55 Spring 2020

Section 2.2: Inverse of a Matrix

If A is an $n \times n$ matrix, a matrix A^{-1} that satisfies

$$
A^{-1} A=A A^{-1}=I_{n} .
$$

is called the inverse of A.
If such matrix A^{-1} exists, we'll say that A is nonsingular (a.k.a. invertible). Otherwise, we'll say that A is singular.

Theorem (2×2 case)

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

If $a d-b c=0$, then A is singular.

$$
\begin{aligned}
& a d-b c \text { is called the determinant } \\
& \text { of } A \text {. }
\end{aligned}
$$

Theorem

If A is an invertible $n \times n$ matrix, then for each \mathbf{b} in \mathbb{R}^{n}, the equation $A \mathbf{x}=\mathbf{b}$ has unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.

- This provides a solution technique for $n \times n$ systems, and in terms of coefficient matrices
- suggests that being singular or nonsingular is related to consistency for a linear system,
- suggests a connection between a determinant ${ }^{1}$ and consistency,
- suggests a connection between singular/nonsingular and the linear dependence/independence of matrix columns.

[^0]
Theorem

(i) If A is invertible, then A^{-1} is also invertible and

$$
\left(A^{-1}\right)^{-1}=A
$$

(ii) If A and B are invertible $n \times n$ matrices, then the product $A B$ is also invertible ${ }^{2}$ with

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

If A, B, C are nonsingular $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$
(iii) If A is invertible, then so is A^{T}. Moreover

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

${ }^{2}$ This can generalize to the product of k invertible matrices.

Elementary Matrices

Definition: An elementary matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples:

$$
\begin{aligned}
& E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right], \quad E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right], \quad E_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] . \\
& 3 R_{2} \rightarrow R_{2} \quad \partial R_{1}+R_{3} \rightarrow R_{3} \quad R_{2} \leftrightarrow R_{1}
\end{aligned}
$$

Action of Elementary Matrices
Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$, and compute the following products

$$
\begin{aligned}
& E_{1} A, \quad E_{2} A, \text { and } E_{3} A . \\
& E_{1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
& =\left[\begin{array}{ccc}
a & b & c \\
3 d & 3 e & 3 f \\
g & h & i
\end{array}\right]^{3_{2}^{, 2}} \\
& E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
& E_{2} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
&=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
2 a+g & 2 b+h & 2 c+i
\end{array}\right] \\
& E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A= {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] } \\
& E_{3} A=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
&=\left[\begin{array}{lll}
d & e & f \\
a & b & c \\
g & h & i
\end{array}\right] R_{2} \\
& E_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Remarks

- Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),
- Each elementary matrix is invertible where the inverse undoes the row operation,
- Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A
$$

Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_{n}. Moreover, if

$$
\operatorname{rref}(A)=E_{k} \cdots E_{2} E_{1} A=I_{n}, \quad \text { then } \quad A=\left(E_{k} \cdots E_{2} E_{1}\right)^{-1} I_{n} .
$$

That is,

$$
A^{-1}=\left[\left(E_{k} \cdots E_{2} E_{1}\right)^{-1}\right]^{-1}=E_{k} \cdots E_{2} E_{1} .
$$

The sequence of operations that reduces A to I_{n}, transforms I_{n} into A^{-1}.

This last observation-operations that take A to I_{n} also take I_{n} to A^{-1}-gives us a method for computing an inverse!

Algorithm for finding A^{-1}

To find the inverse of a given matrix A :

- Form the $n \times 2 n$ augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If $\operatorname{rref}(A)$ is I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$, and the inverse A^{-1} will be the last n columns of the reduced matrix.
- If $\operatorname{rref}(A)$ is $\operatorname{NOT} I$, then A is not invertible.

Remarks: We don't need to know ahead of time if A is invertible to use this algorithm.
If A is singular, we can stop as soon as it's clear that $\operatorname{rref}(A) \neq I$.

Examples: Find the Inverse if Possible

$$
\begin{aligned}
& \text { (a) } \left.\left[\begin{array}{ccc}
1 & 2 & -1 \\
-4 & -7 & 3 \\
-2 & -6 & 4
\end{array}\right] \quad \begin{array}{rl}
A & I
\end{array}\right] \\
& {\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
-4 & -7 & 3 & 0 & 1 & 0 \\
-2 & -6 & 4 & 0 & 0 & 1
\end{array}\right]} \\
& 4 R_{1}+R_{2} \rightarrow R_{2} \\
& 2 R_{1}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & -2 & 2 & 2 & 0 & 1
\end{array}\right] \quad 2 R_{2}+R_{3} \rightarrow R_{3}}
\end{aligned}
$$

$$
\left[\begin{array}{cccccc}
1 & 2 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 4 & 1 & 0 \\
0 & 0 & 0 & 10 & 2 & 1
\end{array}\right]
$$

need a nonzero. entry here which isnit possible.

$$
\operatorname{rref}(A) \neq I_{3}
$$

So A is singular, it doesnit hame an inverse.

[^0]: ${ }^{1}$ We will have to define this, and we will.

