February 15 MATH 1112 sec. 54 Spring 2019

Section 5.5: Solving Exponential and Logarithmic Equations

Base-Exponent Equality For any $a>0$ with $a \neq 1$, and for any real numbers x and y

$$
a^{x}=a^{y} \quad \text { if and only if } x=y .
$$

Logarithm Equality For and $a>0$ with $a \neq 1$, and for any positive numbers x and y

$$
\log _{a} x=\log _{a} y \text { if and only if } x=y .
$$

Inverse Function For any $a>0$ with $a \neq 1$

$$
\begin{aligned}
& a^{\log _{a} x}=x \text { for every } x>0 \\
& \log _{a}\left(a^{x}\right)=x \text { for every real } x .
\end{aligned}
$$

Logarithm Equations

We can also use the three log properties to solve equations involving logarithms.

For any $a>0$ with $a \neq 1$, and M and N positive numbers and r any real number

$$
\begin{gathered}
\log _{a}(M N)=\log _{a} M+\log _{a} N \\
\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N \\
\log _{a}\left(M^{r}\right)=r \log _{a} M
\end{gathered}
$$

Log Equations \& Verifying Answers
Double checking answers is always recommended. When dealing with functions whose domains are restricted, answer verification is critical.

Use properties of logarithms to solve the equation

$$
\ln x+\ln (x-3)=\ln 2+\ln (4 x-15)
$$

using \log properties

$$
\ln (x(x-3))=\ln (2(4 x-15))
$$

By log equivalence

$$
x(x-3)=2(4 x-15)
$$

Just algebra

$$
x^{2}-3 x=8 x-30
$$

$$
\begin{aligned}
x^{2}-3 x-8 x+30 & =0 \\
x^{2}-11 x+30 & =0 \\
(x-6)(x-5) & =0
\end{aligned}
$$

The quadratic equation has 2 solutions

$$
x=6 \quad \text { or } \quad x=5
$$

we need to verify that these solve the original equation

$$
\ln x+\ln (x-3)=\ln 2+\ln (4 x-15)
$$

Check $x=5$

$$
\begin{aligned}
& \ln 5+\ln (5-3) ? \\
&=\ln 2+\ln (4 \cdot 5-15) \\
& \ln 5+\ln 2 \stackrel{?}{=} \ln 2+\ln 5
\end{aligned}
$$

Check $x=6$

$$
\begin{aligned}
\ln 6+\ln (6-3) & \stackrel{?}{=} \ln 2+\ln (4.6-15) \\
\ln 6+\ln 3 & \stackrel{?}{=} \ln 2+\ln 9 \\
\ln (6.3) & \stackrel{?}{=} \ln (2.9) \\
\text { yes } \ln 18 & =\ln 18
\end{aligned}
$$

Both do solve the equation. There are two solutions 5 and 6 .

Question

Solve the equation $\log _{6} x+\log _{6}(x-1)=1$. (Hint: $\log _{6} 6=1$.)
(a) $x=3$ or $x=-2$
(b) $x=2$ or $x=-3$
(c) $x=3$
(d) $x=2$
(e) $x=0$ or $x=1$

Combining Skills
Find all solutions of the equation ${ }^{1}$

$$
\frac{e^{x}+e^{-x}}{2}=2
$$

we con multiply by 2

$$
e^{x}+e^{-x}=4
$$

Note $\ln \left(e^{x}+e^{-x}\right)$ doesint simplify! So we wort take the log here.

Instead, well multiply by e^{x}
${ }^{1}$ The function $f(x)=\frac{e^{x}+e^{-x}}{2}$ is a well known function called the hyperbolic cosine.
February $13,2019 \quad 7 / 56$

$$
\begin{aligned}
& e^{x}\left(e^{x}+e^{-x}\right)=e^{x}(4) \\
& \left(e^{x}\right)^{2}+e^{x} e^{-x}=4 e^{x} \\
& e^{-x}=\frac{1}{e^{x}} \text { so } e^{x} e^{-x}=e^{x} \cdot \frac{1}{e^{x}}=\frac{e^{x}}{e^{x}}=1 \\
& \left(e^{x}\right)^{2}+1=4 e^{x} \Rightarrow\left(e^{x}\right)^{2}-4 e^{x}+1=0
\end{aligned}
$$

Let $u=e^{x}$. The equation is
$u^{2}-4 u+1=0$ a quadratic equation

By the quadratic formula

$$
\begin{aligned}
u & =\frac{4 \pm \sqrt{(-4)^{2}-4 \cdot(1)(1)}}{2}=\frac{4 \pm \sqrt{16-4}}{2} \\
& =\frac{4 \pm \sqrt{12}}{2}=\frac{4 \pm 2 \sqrt{3}}{2}=2 \pm \sqrt{3}
\end{aligned}
$$

we hove 2 's

$$
\begin{gathered}
u=2+\sqrt{3} \text { or } u=2-\sqrt{3} \\
u=e^{x} \text { so } x=\ln u
\end{gathered}
$$

Both u^{\prime} 's are positive, so these are 2 solutions

$$
x=\ln (2+\sqrt{3}) \text { or } x=\ln (2-\sqrt{3})
$$

