February 15 Math 2306 sec. 60 Spring 2018

Section 7: Reduction of Order

We’ll focus on second order, linear, homogeneous equations. Recall
that such an equation has the form

a2 d
ap(X) 525 + (X)L + a(x)y = 0.

Let us assume that a>(x) # 0 on the interval of interest. We will write
our equation in standard form

&y

dy
o2 + P(x) X+Q(x)y_
where P = ay/ap and Q = ag/ ao.
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Y+ PX)% + Qx)y =0

Recall that every fundmantal solution set will consist of two linearly
independent solutions y4 and y», and the general solution will have the
form

y = c1y1(x) + caya(x).

Suppose we happen to know one solution y;(x). Reduction of order
is a method for finding a second linearly independent solution y»(x)
that starts with the assumption that Y, L~ don

ya(x) = u(x)y1(x) - oot b dd

for some function u(x). The method involves finding the function w.
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Example

Verify that y; = e ¥ is a solution of y” — y = 0. Then find a second
solution y» of the form

9‘)2( ‘;SUW“/ ya(X)

= u(x)y1(x) = e *u(x).

that the pair 1, y is linearly independent.
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Generalization

Consider the equation in standard form with one known solution.
Determine a second linearly independent solution.

a2y dy .
W+P(X)E+Q(X)y_o, Y1(X)**'S known.
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y + Py, + Quy, =0

U“‘()\ PRI%S "A-\ O () (u ‘\3\ + Ub:\* Q) Wy, =0

CO\\{C’\' U‘,u‘,(,\“ ‘erms

(A,“‘j‘ + (Z\j“ + P(Y)Sx) (,J o (WU@%\)(A -0

/o - O
N\
0 s \6\ \ ¢ °\V\,\D’\

\
So Y &+ (29 + P(y\\g\\ w =0

\
L\* \A)'- Lbl P So \,J\: U, -“‘-L W S\)\\,.Q‘(

February 14,2018 9/39



\0\\”‘ + (2\0\\491)()\')\3\/3 = 0

ngsu Ja-iehleg

. - (2y, + Py
N Ax
b - (2 Puy)
W o — .
T e I
‘{)\
dy,
__\\Ji’\:—éx = -2 i;__éx -—P(Yﬁé)‘

Y

February 14,2018 10/39



gT\J du - S_z Ab' SP(x\éX

O.SS\.MI-‘\S
&V\ (W 20 \\3\\ - Sﬂy\éx W >0
_ZDv\\\o\\ - &P(X\ A)(
w: & -(Pméx
- g PuANS ¥ e
I . T 4
< \Q\ . e - (\0 \ 3

February 14,2018 11/39



February 14, 2018

12/39



Reduction of Order Formula

For the second order, homogeneous equation in standard form with
one known solution y4, a second linearly independent solution y» is

given by
e—fP(x)dx
= V(X adx
=) [ oo
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Example
Find the general solution of the ODE given one known solution
x2y" —3xy' +4y =0, y; =x?
Asseen x>0, St ot for

\ 3 v % =0
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