February 15 Math 2306 sec. 60 Spring 2018

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_{1} and y_{2}, and the general solution will have the form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

Suppose we happen to know one solution $y_{1}(x)$. Reduction of order is a method for finding a second linearly independent solution $y_{2}(x)$ that starts with the assumption that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

$$
\begin{aligned}
& y_{1} \text {-known } \\
& u \text {-want to find }
\end{aligned}
$$

for some function $u(x)$. The method involves finding the function u.
Due to linear indupendena, $u(x)$ connot be a constant function.

Example
Verify that $y_{1}=e^{-x}$ is a solution of $y^{\prime \prime}-y=0$. Then find a second solution y_{2} of the form
bl y
on $e x$ coarse

$$
y_{2}(x)=u(x) y_{1}(x)=e^{-x} u(x) .
$$

Confirmthat the pair y_{1}, y_{2} is linearly independent.
y_{2} is a solution, so let's substitute it into $y_{2}^{\prime \prime}-y_{2}=0$

$$
\begin{aligned}
y_{2} & =e^{-x} u \\
y_{2}^{\prime} & =e^{-x} u^{\prime}-e^{-x} u \\
y_{2}^{\prime \prime} & =e^{-x} u^{\prime \prime}-e^{-x} u^{\prime}-e^{-x} u^{\prime}+e^{-x} u \\
& =e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}+e^{-x} u
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}^{\prime \prime}-y_{2}=0 \\
& e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}+e^{-x} u-e^{-x} u=0 \\
& e^{-x} u^{\prime \prime}-2 e^{-x} u^{\prime}=0 \\
& e^{-x}\left(u^{\prime \prime}-2 u^{\prime}\right)=0 \Rightarrow u^{\prime \prime}-2 u^{\prime}=0
\end{aligned}
$$

Let $w=u^{\prime}$, then $w^{\prime}=u^{\prime \prime}$. w satisfies

$$
\begin{aligned}
& w^{\prime}-2 w=0 \quad 1^{\text {st }} \text { order. } \\
& \frac{d w}{d x}=2 w
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{w} \frac{d w}{d x}=2 & \Rightarrow \int \frac{1}{w} d w=\int 2 d x \\
\ln |w|=2 x+k & \Rightarrow|w|=e^{2 x+k}=e^{k} e^{2 x}
\end{aligned}
$$

Letting $C=e^{k}$ or $-e^{k}$

$$
\begin{aligned}
w & =C e^{2 x} \\
u^{\prime}=w \text { so } \quad u & =\int w d x=\int C e^{2 x} d x \\
& =\frac{1}{2} C e^{2 x}+B \\
y_{2} & =u y_{1}
\end{aligned}
$$

* The general solution is $y=c_{1} y_{1}+c_{2} y_{2}$

From $\left(\frac{1}{2} C e^{2 x}+B\right) e^{-x}=\frac{1}{2} C e^{2 x} e^{-x}+B e^{-x}$
wére going to include $C_{1} e^{-x}$, so we con take $B=0$. Weill also multiply y_{2} bs C_{2}, so we can tale $\frac{1}{2} C$ to be 1 .
weill bale $u=e^{2 x}$.
Then $y_{2}=4 y_{1}=e^{2 x} \cdot e^{-x}=e^{x}$

The general solution to $y^{\prime \prime}-y=0$ is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& y=c_{1} e^{-x}+c_{2} e^{x}
\end{aligned}
$$

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-- \text { is known. }
$$

y_{1} is a solution, hence $y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0$

$$
\begin{aligned}
y_{2} & =u y_{1} \\
y_{2}^{\prime} & =u^{\prime} y_{1}+u y_{1}^{\prime} \\
y_{2}^{\prime \prime} & =u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& =u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}=0 \\
& u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P(x)\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q(x) u y_{1}=0
\end{aligned}
$$

Collect u, u', u" terms

$$
u^{\prime \prime} y_{1}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}+\underbrace{\text { solution }}_{0^{\prime \prime} \text { since } y_{1} \text { is }}
$$

so $\quad y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) u^{\prime}=0$
Lat $w=u^{\prime}$, so $w^{\prime}=u^{\prime \prime}$ the w solves

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) w=0
$$

Seponate variables

$$
\begin{aligned}
y_{1} \frac{d w}{d x} & =-\left(2 y_{1}^{\prime}+P(x) y_{1}\right) w \\
\frac{1}{w} \frac{d w}{d x} & =\frac{-\left(2 y_{1}^{\prime}+P(x) y_{1}\right)}{y_{1}} \\
\frac{1}{w} \frac{d w}{d x} & =-2 \frac{\frac{d y_{1}}{d x}}{y_{1}}-P(x) \\
\frac{1}{w} \frac{d w}{d x} d x & =-2 \frac{d y_{1}}{\frac{d x}{y_{1}} d x-P(x) d x}
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{w} d w=\int-2 \frac{d y_{1}}{y_{1}}-\int p(x) d x \\
& \ln w=-2 \ln \left|y_{1}\right|-\int p(x) d x \quad \text { assuming } \\
& w>0 \\
& w=e^{-2 \ln \left|y_{1}\right|-\int p(x) d x} \\
&=y_{1}^{2} \cdot e^{-\int p(x) d x}=\frac{e^{-\int p(x) d x}}{\left(y_{1}\right)^{2}} \\
& w=u^{\prime} \Rightarrow u=\int w d x
\end{aligned}
$$

$$
u=\int \frac{e^{-\int P_{p x} d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Then $y_{2}=u y_{1}$

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int p(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Find the general solution of the ODE given one known solution

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0, \quad y_{1}=x^{2}
$$

Assuan $x>0$. Standard fore

$$
\begin{gathered}
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \\
P(x)=\frac{-3}{x} \quad e^{-\int \rho(x) d x}=e^{-\int \frac{-3}{x} d x}=e^{\int \frac{3}{x} d x} \\
=e^{3 \ln x}=e^{\ln x^{3}}=x^{3}
\end{gathered}
$$

$$
\begin{aligned}
u=\int & \frac{e^{-\int \rho(x) d x}}{\left(y_{1}\right)^{2}} d x=\int \frac{x^{3}}{\left(x^{2}\right)^{2}} d x \\
& =\int \frac{x^{3}}{x^{4}} d x=\int \frac{1}{x} d x=\ln x \\
& y_{2}=\ln y_{1}=x^{2} \ln x
\end{aligned}
$$

The general solution to the $O D E$ is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

