February 15 Math 2306 sec. 60 Spring 2019

Section 6: Linear Equations Theory and Terminology

We defined linear dependence and the Wronskian last time. The following theorem provides a test for linear dependence (or independence).

Theorem (a test for linear independence) Let $f_{1}, f_{2}, \ldots, f_{n}$ be $n-1$ times continuously differentiable on an interval I. If there exists x_{0} in I such that $W\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(x_{0}\right) \neq 0$, then the functions are linearly independent on l.

Determine if the functions are linearly dependent or independent:

$$
y_{1}=x^{2}, \quad y_{2}=x^{3} \quad I=(0, \infty)
$$

We computed the Wronskian and found

$$
W\left(y_{1}, y_{2}\right)(x)=x^{4}
$$

which is not the zero function. So the functions are linearly independent.

Fundamental Solution Set

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

Theorem: Under the assumed conditions, the equation has a fundamental solution set.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Example
Verify that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ form a fundamental solution set of the ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0 \quad \text { on } \quad(0, \infty)
$$

and determine the general solution.
we went to show that

- there are 2 functions in ow set
- they are solutions
- they are linearly independent

There are two of them, y_{1} and y_{2}. We found that $W\left(y_{1}, y_{2}\right)(x)=x^{4} \neq 0$ so they are linearly in dependent.
we hove to verity that the solve the
ODE

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Check $y_{1}=x^{2} \quad x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1}=$

$$
\begin{array}{ll}
y_{1}^{\prime}=2 x & x^{2}(2)-4 x(2 x)+6 x^{2}= \\
y_{1}^{\prime \prime}=2 & 2 x^{2}-8 x^{2}+6 x^{2}=0 \quad y_{1} \text { is a solution }
\end{array}
$$

Check $y_{2}: y_{2}=x^{3} \quad x^{2} y_{2}^{\prime \prime}-4 x y_{2}^{\prime}+6 y_{2}=$

$$
\begin{array}{lll}
y_{2}^{\prime}=3 x^{2} & x^{2}(6 x)-4 x\left(3 x^{2}\right)+6 x^{3}= & y_{2} \text { is also } \\
y_{2}^{\prime \prime}=6 x & 6 x^{3}-12 x^{3}+6 x^{3}=0 & \text { a solution }
\end{array}
$$

The pair does form a fundamental solution set.

The genera solution is

Nonhomogeneous Equations

Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

The left side is exactly the same as the nonhomogeneuss Version.

Theorem: General Solution of Nonhomogeneous Equation

Let y_{p} be any solution of the nonhomogeneous equation, and let y_{1}, y_{2}, \ldots, y_{n} be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Note the form of the solution $y_{c}+y_{p}$! (complementary plus particular) The complemenatry part

$$
y_{c}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

Another Superposition Principle (for nonhomogeneous eqns.)
 Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions to the nonhomogeneous linear equations

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

for $i=1, \ldots, k$. Assume the domain of definition for all k equations is a common interval I.

Then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}
$$

is a particular solution of the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x) .
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$ We will construct the general solution by considering sub-problems.
(a) Part 1 Verify that

$$
y_{p_{1}}=6 \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36 .
$$

Substitute

$$
\begin{aligned}
& y_{p_{1}}=6 \\
& y_{p_{1}^{\prime}}^{\prime}=0 \\
& y_{p_{1}}{ }^{\prime \prime}=0
\end{aligned}
$$

$$
\begin{aligned}
x^{2} y_{p_{1}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}} & =36 \\
x^{2}(0)-4 x(0)+6(6) & =36 \\
36 & =36
\end{aligned}
$$

$y_{p_{1}}=6$ does solve this equation

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Part 2 Verify that

$$
y_{p_{2}}=-7 x \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x
$$

Substitute

$$
\begin{aligned}
& y_{p_{2}}=-7 x \\
& y_{p_{2}}{ }^{\prime}=-7 \\
& y_{p_{2}}{ }^{\prime \prime}=0
\end{aligned}
$$

$$
\begin{array}{rl}
x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}} & ?-14 x \\
x^{2}(0)-4 x(-7)+6(-7 x) & ?-14 x \\
& ? \\
28 x-42 x & =-14 x \\
-14 x & =-14 x
\end{array}
$$

$y_{P_{2}}$ solves the $O D E$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Part 3 We already know that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

$$
y_{p_{1}}=6 \quad y_{2}=-7 x
$$

By super position

$$
\begin{aligned}
& y_{p}=y_{p_{1}}+y_{p_{2}} \\
& y_{p}=6-7 x
\end{aligned}
$$

Also $y_{c}=c_{1} y_{1}+c_{2} y_{2}=c_{1} x^{2}+c_{2} x^{3}$
The genera solution is $y=c_{1} x^{2}+c_{2} x^{3}+6-7 x$

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=-5
$$

We know that the genera solution to the ODP is

$$
\begin{aligned}
& y=c_{1} x^{2}+c_{2} x^{3}+6-7 x \\
& y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7
\end{aligned}
$$

Apply the I.C.

$$
\begin{aligned}
& y(1)=c_{1} 1^{2}+c_{2} 1^{3}+6-7(1)=0 \\
& c_{1}+c_{2}-1=0 \\
& c_{1}+c_{2}=1
\end{aligned}
$$

$$
\begin{aligned}
y^{\prime}(1)=2 c_{1}(1)+3 c_{2} 1^{2}-7 & =-5 \\
2 c_{1}+3 c_{2}-7 & =-5 \\
2 c_{1}+3 c_{2} & =2
\end{aligned}
$$

Solve

$$
\begin{aligned}
& \left.\begin{array}{r}
c_{1}+c_{2}=1 \\
2 c_{1}+3 c_{2}=2
\end{array}\right\} \Rightarrow \begin{array}{r}
2 c_{1}+2 c_{2}=2 \\
-\frac{2 c_{1}+3 c_{2}}{}=2 \\
-c_{2}=0 \\
c_{2}=0
\end{array} \\
& c_{1}+0=1 \quad c_{1}=1
\end{aligned}
$$

The solution to the IVP is

$$
y=x^{2}+6-7 x
$$

