February 15 Math 3260 sec. 55 Spring 2018

Section 2.1: Matrix Operations

Matrix Multiplication We wish to define matrix multiplication in such a way as to correspond to function composition. That is, for linear transformations S and T, if

$$
S(\mathbf{x})=B \mathbf{x}, \quad \text { and } \quad T(\mathbf{v})=A \mathbf{v},
$$

then

$$
(T \circ S)(\mathbf{x})=T(S(\mathbf{x}))=A(B \mathbf{x})=(A B) \mathbf{x} .
$$

Matrix Multiplication

Figure: Composition requires the number of rows of B match the number of columns of A. Otherwise the product is not defined.

Matrix Multiplication

$$
\begin{aligned}
S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{n} & \Longrightarrow B \sim n \times p \\
T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m} & \Longrightarrow A \sim m \times n \\
T \circ S: \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m} & \Longrightarrow \quad A B \sim m \times p
\end{aligned}
$$

$$
B \mathbf{x}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p} \Longrightarrow
$$

$$
A(B \mathbf{x})=x_{1} A \mathbf{b}_{1}+x_{2} A \mathbf{b}_{2}+\cdots+x_{p} A \mathbf{b}_{p} \Longrightarrow
$$

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

The $j^{\text {th }}$ column of $A B$ is A times the $j^{\text {th }}$ column of B.

Example
Compute the product $A B$ where

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right] \\
2 \times 242 x^{3} \\
\vec{b}_{1}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \vec{b}_{2}=\left[\begin{array}{c}
0 \\
-4
\end{array}\right], \vec{b}_{3}=\left[\begin{array}{l}
2 \\
6
\end{array}\right] \\
A \vec{b}_{1}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2-3 \\
-4+2
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] \\
A \vec{b}_{2}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{c}
0 \\
-4
\end{array}\right]=\left[\begin{array}{c}
0-3(-4) \\
0-8
\end{array}\right]=\left[\begin{array}{l}
12 \\
-8
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
A \vec{b}_{3}=\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right]=\left[\begin{array}{c}
2-18 \\
-4+12
\end{array}\right]=\left[\begin{array}{c}
-16 \\
8
\end{array}\right] \\
\text { so } \\
A B=\left[\begin{array}{ccc}
-1 & 12 & -16 \\
-2 & -8 & 9
\end{array}\right] \\
A \begin{array}{ccc}
& B & \Rightarrow A B \\
2 \times 2 & 2 \times 3 & \\
2 \times 3
\end{array}
\end{gathered}
$$

Row-Column Rule for Computing the Matrix Product

 Suppose A is $m \times n$, and B is $n \times p$. If $A B=C=\left[c_{i j}\right]$, then$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

(The $i j^{\text {th }}$ entry of the product is the dot product of $i i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B.)

$$
n=2
$$

For example: $\quad A B=\left[\begin{array}{cc}1 & -3 \\ -2 & 2\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 2 \\ 1 & -4 & 6\end{array}\right]=\left[\begin{array}{ccc}-1 & 12 & -16 \\ -2 & -8 & 8\end{array}\right]$

$$
\begin{aligned}
& c_{11}=\sum_{k=1}^{2} a_{1 k} b_{k 1}=a_{11} b_{11}+a_{12} b_{21}=1(2)+(-3)(1)=-1 \\
& c_{12}=\sum_{k=1}^{2} a_{1 k} b_{k 2}=a_{11} b_{12}+a_{12} b_{22}=1 \cdot 0+(-3)(-4)=12
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & -3 \\
-2 & 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 2 \\
1 & -4 & 6
\end{array}\right]} \\
& c_{13}=\sum_{k=1}^{2} a_{1 k} b_{k 3}=a_{11} b_{13}+a_{12} b_{23} \\
& =1.2+(-3) \cdot 6=-16 \\
& c_{21}=\sum_{k=1}^{2} a_{2 k} b_{k 1}=a_{21} b_{11}+a_{22} b_{21} \\
& =-2 \cdot 2+2 \cdot 1=-2 \\
& c_{22}=\sum_{k=1}^{2} a_{2 k} b_{k 2}=a_{21} b_{12}+a_{22} b_{22} \\
& =-2 \cdot 0+2 \cdot(-4)=-8
\end{aligned}
$$

$$
\begin{aligned}
c_{23}=\sum_{k=1}^{2} a_{2 k} b_{k 3} & =a_{21} b_{13}+a_{22} b_{23} \\
& =-2.2+2.6=8
\end{aligned}
$$

Theorem: Properties-Matrix Product

Let A be an $m \times n$ matrix. Let r be a scalar and B and C be matrices for which the indicated sums and products are defined. Then
(i) $A(B C)=(A B) C$
(ii) $A(B+C)=A B+A C$
(iii) $(B+C) A=B A+C A$
(iv) $r(A B)=(r A) B=A(r B)$, and
(v) $I_{m} A=A=A I_{n}$

Caveats!

(1) Matrix multiplication does not commute! In general $A B \neq B A$
(2) The zero product property does not hold! That is, if $A B=O$, one cannot conclude that one of the matrices A or B is a zero matrix.
(3) There is no cancelation law. That is, $A B=C B$ does not imply that A and C are equal.

Compute $A B$ and $B A$ where $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}4 & 1 \\ -1 & 2\end{array}\right]$.
Both products are defined.

$$
\begin{aligned}
& A B=\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
4 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
2 & 5 \\
-3 & 6
\end{array}\right] \quad A B \neq B A \\
& B A=\left[\begin{array}{cc}
4 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{cc}
4 & 11 \\
-1 & 4
\end{array}\right]
\end{aligned}
$$

Compute the products $A B, C B$, and $B B$ where $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, $B=\left[\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right]$, and $C=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

$$
\left.\begin{array}{l}
A B=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]
\end{array} \begin{array}{cc}
A B=C B \\
\text { but }
\end{array}\right] \begin{array}{ll}
A \neq C \\
C B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right] & B B=0 \\
B B=\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] & \text { But } B \neq 0
\end{array}
$$

Matrix Powers

If A is square-meaning A is an $n \times n$ matrix for some $n \geq 2$, then the product $A A$ is defined. For positive integer k, we'll define

$$
A^{k}=A A^{k-1}
$$

We define $A^{0}=I_{n}$.

$$
\text { s. } A A=A^{2}, A^{3}=A A^{2} \text { and so on. }
$$

Transpose

Definition: Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix. The transpose of A is the $n \times m$ matrix denoted and defined by

$$
A^{T}=\left[a_{j j}\right] .
$$

For example, if

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right], \text { then } A^{T}=\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right] .
$$

Example

$$
A=\underset{2 \times 2}{\left[\begin{array}{cc}
5 & 5 \\
-1 & 4
\end{array}\right], \quad B=\left[\begin{array}{ccc}
2 & 0 & 3 \\
-1 & 1 & 4
\end{array}\right]} \begin{gathered}
2 \times 3
\end{gathered}
$$

Compute A^{T}, B^{T}, the transpose of the product $(A B)^{T}$, and the product $B^{T} A^{T}$.

$$
\begin{aligned}
& A^{\top}=\left[\begin{array}{cc}
5 & -1 \\
5 & 4
\end{array}\right] \quad B^{\top}=\left[\begin{array}{cc}
2 & -1 \\
0 & 1 \\
3 & 4
\end{array}\right] \\
& A B=\left[\begin{array}{cc}
5 & 5 \\
-1 & 4
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 3 \\
-1 & 1 & 4
\end{array}\right]=\left[\begin{array}{ccc}
5 & 5 & 35 \\
-6 & 4 & 13
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (A B)^{\top}=\left[\begin{array}{cc}
5 & -6 \\
5 & 4 \\
35 & 13
\end{array}\right] \\
& B^{\top} A^{\top}=\left[\begin{array}{cc}
2 & -1 \\
0 & 1 \\
3 & 4
\end{array}\right]\left[\begin{array}{cc}
5 & -1 \\
5 & 4
\end{array}\right]=\left[\begin{array}{cc}
5 & -6 \\
5 & 4 \\
35 & 13
\end{array}\right]
\end{aligned}
$$

Note $(A B)^{\top}=B^{\top} A^{\top}$

Theorem: Properties-Matrix Transposition

Let A and B be matrices such that the appropriate sums and products are defined, and let r be a scalar. Then
(i) $\left(A^{T}\right)^{T}=A$
(ii) $(A+B)^{T}=A^{T}+B^{T}$
(iii) $(r A)^{T}=r A^{T}$
(iv) $(A B)^{T}=B^{T} A^{T}$

