
February 16 Math 1190 sec. 62 Spring 2017
Section 2.4: Differentiating a Product or Quotient; Higher Order

Derivatives

Theorem: (Product Rule) Let f and g be differentiable functions of x .
Then the product f (x)g(x) is differentiable. Moreover

d
dx

[f (x)g(x)] = f ′(x)g(x) + f (x)g′(x).

Theorem (Quotient Rule) Let f and g be differentiable functions of x .
Then on any interval for which g(x) 6= 0, the ratio f (x)

g(x) is differentiable.
Moreover

d
dx

(
f (x)
g(x)

)
=

f ′(x)g(x)− f (x)g′(x)
[g(x)]2

.
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Example

Evaluate
d
dx

(
ex

x2 + 2x

)
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Question

Evaluate f ′(x) where f (x) =
3x + 4
x2 + 1

(a) f ′(x) =
3x2 + 8x − 3
(x2 + 1)2

(b) f ′(x) =
3− 2x(3x + 4)

(x2 + 1)

(c) f ′(x) =
−3x2 − 8x + 3

(x2 + 1)2

(d) f ′(x) =
−3x2 − 8x + 3

x4 + 1
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Higher Order Derivatives:
Given y = f (x), the function f ′ may be differentiable as well. We may
take its derivative which is called the second derivative of f . We use
the following notation and language:

First derivative:
dy
dx

= y ′ = f ′(x)

Second derivative:
d
dx

dy
dx

=
d2y
dx2 = y ′′ = f ′′(x)

Third derivative:
d
dx

d2y
dx2 =

d3y
dx3 = y ′′′ = f ′′′(x)

Fourth derivative:
d
dx

d3y
dx3 =

d4y
dx4 = y (4) = f (4)(x)

nth derivative:
d
dx

dn−1y
dxn−1 =

dny
dxn = y (n) = f (n)(x)
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Remarks on Notation

I d
dx can operate on a function to produce a new function; e.g.

d
dx

(
d2y
dx2

)
=

d3y
dx3

I It’s too hard to read multiple primes (say beyond 3). Parentheses
must be used to distinguish powers from derivatives.

y5 is the fifth power of y ;

y (5) is the fifth derivative of y
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Example

Compute the first, second, and third derivatives of f (x) = 3x4 + 2x2.
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Example

Evaluate F ′′(x) and F ′′(2) where F (x) = x3ex .
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Question

Let a, b, and c be nonzero constants. If y = ax2 + bx + c, then d3y
dx3 is

(a) 0

(b) 2a + b + c

(c) 2a

(d) cannot be determined without knowing the values of a, b, and c.
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Recall the Notation

I d
dx can operate on a function to produce a new function; e.g.

d
dx

(
d2y
dx2

)
=

d3y
dx3

I It’s too hard to read multiple primes (say beyond 3). Parentheses
must be used to distinguish powers from derivatives.

y5 is the fifth power of y ;

y (5) is the fifth derivative of y
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Question

True or False: The fourth derivative of a function y = f (x) is denoted
by

dy4

dx4 .
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Rectilinear Motion

If the position s of a particle in motion (relative to an origin) is a
differentiable function s = f (t) of time t , then the derivatives are
physical quantities.

Velocity: is the rate of change of position with respect to time. But we
know that the derivative is the rate of change! Hence the velocity v is
the derivative of position. That is,

v =
ds
dt

= f ′(t).
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Rectilinear Motion

Acceleration: is the rate of change of velocity with respect to time.
Again, we have a rate of change! The acceleration a is the derivative
of the velocity. Thus,

a =
dv
dt

=
d2s
dt2 = f ′′(t).
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Galileo’s Law
Galileo’s law states that in a vacuum (i.e. in the absence of fluid drag),
the position of any object falling near the Earth’s surface, subject only
to gravity, is proportional to the square of the time elapsed.
Mathematically, position s satisfies

s = −ct2.

Show that this statement is equivalent to saying that the acceleration
due to gravity is constant.
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Question

A particle moves along the x-axis so that its position relative to the
origin satisfies s = t3 − 4t2 + 5t . Determine the acceleration of the
particle at time t = 1.

(a) a(1) = 0

(b) a(1) = −2

(c) a(1) = 6t − 8

(d) a(1) = 3t2 − 8t + 5
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Section 2.5: The Derivative of the Trigonometric
Functions

We wish to arrive at derivative rules for each of the six trigonometric
functions.

Recall the limits from before

lim
θ→0

sin θ
θ

= 1 and lim
θ→0

cos θ − 1
θ

= 0
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d
dx

sin(x) = cos(x) and
d
dx

cos(x) = − sin(x)

We’ll prove the first (the second is left as an exercise).
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Figure: Graphs of y = sin x , y = cos x , y = − sin x (from top to bottom).
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Example: Evaluate the derivative.

d
dx

(sin x+4 cos x)
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Question

d
dx

sin x = cos x ,
d
dx

cos x = − sin x ,

d
dx

f (x)g(x) = f ′(x)g(x) + f (x)g′(x)

Evaluate the derivative
d
dx

x sin x

(a) sin x + cos x

(b) x cos x − sin x

(c) sin x + x cos x

(d) 1 · cos x
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Use the fact that tan x = sin x/ cos x to determine the derivative rule
for the tangent.

d
dx

tan x =
d
dx

(
sin x
cos x

)
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Six Trig Function Derivatives

d
dx

sin x = cos x ,
d
dx

cos x = − sin x ,

d
dx

tan x = sec2 x ,
d
dx

cot x = − csc2 x ,

d
dx

sec x = sec x tan x ,
d
dx

csc x = − csc x cot x

February 16, 2017 26 / 55



Question

Which of the following is correct?

(a)
d
dx

ex = xex−1

(b)
d
dx

ex = ex

(c)
d
dx

ex = 0 since e is constant.
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Question
If g(t) = 2et − cot(t), then

(a)
dg
dt

= 2et−cos t
sin t

(b)
dg
dt

= 2tet−1+csc2 t

(c)
dg
dt

= 2et+csc2 t

(d)
dg
dt

= 2et−tan t
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Example
Find the equation of the line tangent to the graph of y = sec x at the
point (π/3,2).
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Figure: Graphs of y = sec x and y = 2
√

3x − 2
√

3π
3 + 2
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