Feb. 16 Math 2254H sec 015H Spring 2015

Section 7.8: Improper Integrals

Show that the horn of Gabriel has infinite surface area:

Figure: The differential arclength parameter: $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$

Surface Area of a piece

$$
\begin{aligned}
& S A_{\text {piece }}=2 \pi r \Delta s \\
& r=\frac{1}{x} \quad \text { and } \quad \Delta s=\sqrt{1+\left(\frac{\Delta y}{\Delta x}\right)^{2}} \Delta x
\end{aligned}
$$

Total Surface area

$$
S A=\int_{1}^{\infty} 2 \pi \frac{1}{x} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

$$
\begin{aligned}
& y=\frac{1}{x} \quad \text { so } \quad \frac{d y}{d x}=\frac{-1}{x^{2}} \Rightarrow\left(\frac{d y}{d x}\right)^{2}=\frac{1}{x^{4}} \\
& S A=2 \pi \int_{1}^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x
\end{aligned}
$$

Recall $\int_{1}^{\infty} \frac{1}{x} d x$ is divergent.
And note that $1+\frac{1}{x^{4}} \geqslant 1$ for all $x \geqslant 1$

So

$$
\begin{gathered}
1 \leq \sqrt{1+\frac{1}{x^{4}}} \Rightarrow \\
0<\frac{1}{x} \leq \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} \quad \begin{array}{r}
\text { for al } \\
x \geqslant 1
\end{array}
\end{gathered}
$$

Hence $\quad \int_{1}^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} d x$ diverges by comparison.

This mathematical object has a finite volume but on infinite surface area.

Section 10.1: Parametric Curves

Figure: Graphs of two curves: One is an explicit function, the other is not a function but the points satisfy a relation.

Curve as a Path

Definition: We consider a path to be a curve along with an orientation-i.e. a specified direction of motion along that curve.

Remark: If a path is in the $x y$-plane, and a particle is traversing the path (in time), then at each moment the position of the particle can be characterized by an ordered pair

$$
(x, y)=(f(t), g(t)) .
$$

The functions f and g dictate the value of each coordinate at each moment t in time.

Definitions: t is called a parameter, the pair

$$
x=f(t), \quad y=g(t)
$$

is called a set of parametric equations, and the collection of points (x, y) is called a parametric curve.

Example of Parametric Equations and Curve

$$
x=t^{2}-2 t, \quad y=t+1, \quad 0 \leq t \leq 5
$$

Characteristics:

- The curve (x, y) will begin at $(0,1)$ when $t=0$ and end at $(15,6)$ when $t=5$.
- The x coordinate will decrease on $0<t<1$ from 0 to -1 , then will increase. How do we know this?? ${ }^{1}$
- The y coordinate increases at a constant rate from 1 to 6.

[^0]\[

$$
\begin{aligned}
& x=t^{2}-2 t, \quad y=t+1, \quad 0 \leq t \leq 5 \\
& \frac{d x}{d t}=2 t-2=2(t-1) \quad \frac{d x}{d t}=0 \quad \text { if } \quad t=1 \\
& \frac{d x}{d t}<0 \quad \text { if } t<1, \quad \frac{d y}{d t}>0 \text { if } t>1 \\
& \frac{d y}{d t}=1 \\
& y=t+1 \Rightarrow \quad t=y-1 \quad \text { so that } \\
& x=(y-1)^{2}-2(y-1)=y^{2}-2 y+1-2 y+2 \\
& \quad x=y^{2}-4 y+3=(y-1)(y-3) \\
& \text { for } 1 \leq y \leq 6
\end{aligned}
$$
\]

Parametric Curve ${ }^{2}$

Figure: Parametric Curve $x=t^{2}-2 t, y=t+1$, for $0 \leq t \leq 5$
${ }^{2}$ See Maple Worksheet for particle animation.

[^0]: ${ }^{1}$ We'll work out the details on the following slide.

