February 16 Math 2306 sec 58 Spring 2016

Section 6: Linear Equations Theory and Terminology

We're still considering this equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

with the assumptions $a_{n}(x) \neq 0$ and $a_{i}(x)$ are continuous on I.

Definition: A set of functions $y_{1}, y_{2}, \ldots, y_{n}$ is a fundamental solution set of the $n^{\text {th }}$ order homogeneous equation provided they
(i) are solutions of the equation,
(ii) there are n of them, and
(iii) they are linearly independent.

General Solution of $n^{\text {th }}$ order Linear Homogeneous Equation

Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental solution set of the $n^{\text {th }}$ order linear homogeneous equation. Then the general solution of the equation is

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Consider $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ for $x>0$

Determine which if any of the following sets of functions is a fundamental solution set.
(a) $\quad y_{1}=2 x^{2}, \quad y_{2}=x^{2}$
(b) $y_{1}=x^{2}, \quad y_{2}=x^{-2}$
(c) $y_{1}=x^{3}, \quad y_{2}=x^{2}$
(d) $y_{1}=x^{2}, \quad y_{2}=x^{3}, \quad y_{3}=x^{-2}$

We determined that (a) was linearly dependent, (d) has the wrong number of potential solutions, and $y_{2}=x^{-2}$ from set (b) doesn't solve the ODE. The function $y_{2}=x^{2}$ from set (c) DOES solve the ODE.

Does $y_{1}=x^{3}$ solve the ODE?

$$
\begin{array}{lll}
y_{1}=x^{3} & x^{2} y_{1}^{\prime \prime}-4 x y_{1}^{\prime}+6 y_{1}= & \text { Yes, it's } \\
y_{1}^{\prime}=3 x^{2} & x^{2}(6 x)-4 x\left(3 x^{2}\right)+6 x^{3}= & \text { a } \\
y_{1}^{\prime \prime}=6 x & 6 x^{3}-12 x^{3}+6 x^{3}=0 & \text { solon. }
\end{array}
$$

Check linear independence.

$$
W\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
x^{3} & x^{2} \\
3 x^{2} & 2 x
\end{array}\right|
$$

$$
\begin{aligned}
& \quad=x^{3}(2 x)-3 x^{2}\left(x^{2}\right)=2 x^{4}-3 x^{4}=-x^{4} \\
& w\left(y_{1}, y_{2}\right)(x)=-x^{4} \neq 0
\end{aligned}
$$

They are linearly independent.
So $y_{1}=x^{3}, y_{2}=x^{2}$ is a fundamental Solution set to $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ on $x>0$.

Nonhomogeneous Equations

Now we will consider the equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

where g is not the zero function. We'll continue to assume that a_{n} doesn't vanish and that a_{i} and g are continuous.

The associated homogeneous equation is

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Write the associated homogeneous equation
(a) $x^{3} y^{\prime \prime \prime}-2 x^{2} y^{\prime \prime}+3 x y^{\prime}+17 y=e^{2 x}$

$$
x^{3} y^{\prime \prime \prime}-2 x^{2} y^{\prime \prime}+3 x y^{\prime}+17 y=0
$$

(b) $\frac{d^{2} y}{d x^{2}}+14 \frac{d y}{d x}=\cos \left(\frac{\pi x}{2}\right)$

$$
\frac{d^{2} y}{d x^{2}}+14 \frac{d y}{d x}=0
$$

Theorem: General Solution of Nonhomogeneous Equation

Let y_{p} be any solution of the nonhomogeneous equation, and let y_{1}, y_{2}, \ldots, y_{n} be any fundamental solution set of the associated homogeneous equation.

Then the general solution of the nonhomogeneous equation is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\cdots+c_{n} y_{n}(x)+y_{p}(x)
$$

where $c_{1}, c_{2}, \ldots, c_{n}$ are arbitrary constants.

Note the form of the solution $y_{c}+y_{p}$!
(complementary plus particular)

Another Superposition Principle (for nonhomogeneous eqns.)
 Let $y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{k}}$ be k particular solutions to the nonhomogeneous linear equations

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g_{i}(x)
$$

for $i=1, \ldots, k$. Assume the domain of definition for all k equations is a common interval I.

Then

$$
y_{p}=y_{p_{1}}+y_{p_{2}}+\cdots+y_{p_{k}}
$$

is a particular solution of the nonhomogeneous equation

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+\cdots+a_{0}(x) y=g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x) .
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(a) Verify that

$$
g_{1}{ }_{1 x} \quad \sim_{g_{2}}(x)
$$

$$
y_{p_{1}}=6 \text { solves } x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36 .
$$

$$
\begin{aligned}
y_{p_{1}}=6 & x^{2} y_{p_{1}}^{\prime \prime}-4 x y_{p_{1}}^{\prime}+6 y_{p_{1}}
\end{aligned}=\left\{\begin{array}{lr}
y_{p_{1}}^{\prime}=0 & x^{2}(0)-4 x(0)+6(6) \\
y_{p_{1}}^{\prime \prime}=0 & 36
\end{array}\right)=36
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(b) Verify that

$$
\begin{array}{rlrl}
y_{p_{2}}=-7 x & \text { solves } & x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=-14 x . \\
y_{p_{2}}=-7 x & x^{2} y_{p_{2}}^{\prime \prime}-4 x y_{p_{2}}^{\prime}+6 y_{p_{2}} & = \\
y_{p_{2}}{ }^{\prime}=-7 & x^{2}(0)-4 x(-7)+6(-7 x) & = \\
y_{p_{2}}{ }^{\prime \prime}=0 & 28 x-42 x & = \\
& -14 x & =-14 x
\end{array}
$$

Example $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$
(c) Recall that $y_{1}=x^{2}$ and $y_{2}=x^{3}$ is a fundamental solution set of

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

Use this along with results (a) and (b) to write the general solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x$.

From (a) and (b) $\quad y_{p}=y_{p_{1}}+y_{p_{2}}=6-7 x$

The genera solution is

$$
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=36-14 x, \quad y(1)=0, \quad y^{\prime}(1)=-5
$$

The geneal solution to the ODE is

$$
\begin{array}{ll}
y=c_{1} x^{2}+c_{2} x^{3}+6-7 x \\
y^{\prime}=2 c_{1} x+3 c_{2} x^{2}-7 & , y(1)=c_{1} 1+c_{2} \cdot 1+6-7 \cdot 1=0 \\
\left.\begin{array}{l}
c_{1}+c_{2}=1 \\
2 c_{1}+3 c_{2}=2
\end{array}\right\} \Rightarrow(1)=2 c_{1} \cdot 1+3 c_{2} \cdot 1-7=-5 \\
\frac{-c_{2}}{}=0
\end{array} \begin{aligned}
& 2 c_{1}+2 c_{2}=2 \\
& 2 c_{1}+3 c_{2}=2
\end{aligned}
$$

$$
c_{2}=0 \quad \text { so } \quad c_{1}=1
$$

The solution to the IVP is

$$
y=x^{2}+6-7 x
$$

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_{1} and y_{2}, and the general solution will have the form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Suppose we happen to know one solution $y_{1}(x)$. Reduction of order is a method for finding a second linearly independent solution $y_{2}(x)$ that starts with the assumption that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

for some function $u(x)$. The method involves finding the function u.

Example
Verify that $y_{1}=e^{-x}$ is a solution of $y^{\prime \prime}-y=0$. Then find a second solution y_{2} of the form

$$
y_{2}(x)=u(x) y_{1}(x)=e^{-x} u(x) .
$$

Confirm that the pair y_{1}, y_{2} is linearly independent.
Verify y, solves the ODE:

$$
\begin{array}{r}
y_{1}=e^{-x}, y_{1}^{\prime}=-e^{-x}, y_{1}^{\prime \prime}=e^{-x} \\
y_{1}^{\prime \prime}-y_{1}=e^{-x}-e^{-x}=0
\end{array}
$$

Yes bi solves the ODE.

$$
y^{\prime \prime}-y=0
$$

$y_{2}=e^{-x} u$ this must solve the ODE

$$
\begin{aligned}
& y_{2}^{\prime}=-e^{-x} u+e^{-x} u^{\prime} \\
& y_{2}^{\prime \prime}=e^{-x} u-e^{-x} u^{\prime}-e^{-x} u^{\prime}+e^{-x} u^{\prime \prime} \\
&=e^{-x} u-2 e^{-x} u^{\prime}+e^{-x} u^{\prime \prime} \\
& y_{2}^{\prime \prime}-y_{2}=e^{-x} u-2 e^{-x} u^{\prime}+e^{-x} u^{\prime \prime}-e^{-x} u=0
\end{aligned}
$$

$$
\begin{gathered}
-e^{-x} u-2 e^{-x} u^{\prime}+e^{-x} u^{\prime \prime}-e^{-x} u=0 \\
e^{-x}\left(u^{\prime \prime}-2 u^{\prime}\right)=0 \\
\Rightarrow u^{\prime \prime}-2 u^{\prime}=0
\end{gathered}
$$

Let $w=u^{\prime}$, then $w^{\prime}=u^{\prime \prime}$ in w, th is is the $1^{\text {st }}$ order equation

$$
w^{\prime}-2 w=0 \quad s^{s x}{ }_{0} \partial^{2} \text { liner }
$$

ard separable

$$
\begin{gathered}
\frac{d w}{d x}=2 w \Rightarrow \frac{1}{w} d w=2 d x \\
\int \frac{1}{w} d w=\int 2 d x=2 x \\
\ln w=2 x \Rightarrow w=e^{2 x} \\
w=u^{\prime} \text { so } \quad u=\int w d x=\int e^{2 x} d x=\frac{1}{2} e^{2 x} \\
y_{2}=u \cdot y_{1}=\frac{1}{2} e^{2 x} \cdot e^{-x}=\frac{1}{2} e^{x}-x
\end{gathered}
$$

The sinural solution is $y=c_{1} e^{-x}+C_{2} e^{x}$.
For lin. independence, see slides of $\left.2|1|\right|_{\text {February } 11,2016}$ ald

Generalization
Consider the equation in standard form with one known solution.
Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-- \text { is known. }
$$

Assume $y_{2}=y_{1} u \quad u(x)$-some function TBD

$$
\begin{aligned}
y_{2}^{\prime} & =y_{1} u^{\prime}+y_{1}^{\prime} u \\
y_{2}^{\prime \prime} & =y_{1} u^{\prime \prime}+y_{1}^{\prime} u^{\prime}+y_{1}^{\prime} u^{\prime}+y_{1}^{\prime \prime} u \\
& =y_{1} u^{\prime \prime}+2 y_{1}^{\prime} u^{\prime}+y_{1}^{\prime \prime} u
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}^{\prime \prime}+P(x) y_{2}^{\prime}+Q(x) y_{2}= \\
& y_{1} u^{\prime \prime}+2 y_{1}^{\prime} u^{\prime}+y_{1}^{\prime \prime} u+P(x)\left(y_{1} u^{\prime}+y_{1}^{\prime} u\right)+Q(x) y_{1} u=0 \\
& y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}+\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right) u=0
\end{aligned}
$$

Recall y_{1} solves the homogeneous eqn.

$$
\text { ie. } \quad y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0
$$

we hove

$$
y_{1} u^{\prime \prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) u^{\prime}=0
$$

well finish next time.

