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Section 6: Linear Equations Theory and Terminology
We're still considering this equation

d" an-1 d
an(x )d};+an 1(x )dxn_{+---+a1(x)d—§+ao(x)y:0

with the assumptions a,(x) # 0 and a;(x) are continuous on /.

Definition: A set of functions y1, yo, ..., ¥, is a fundamental solution
set of the n' order homogeneous equation provided they

(i) are solutions of the equation,

(i) there are n of them, and

(iii) they are linearly independent.
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General Solution of n order Linear Homogeneous
Equation

Let y4, ya, ..., yn be a fundamental solution set of the n'" order linear
homogeneous equation. Then the general solution of the equation is

y(X) = c1y1(x) + Caya(X) + - + Cpyn(X),
where ¢y, Co, ..., Cy are arbitrary constants.
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Consider x2y” — 4xy’ + 6y = 0 for x > 0

Determine which if any of the following sets of functions is a
fundamental solution set.

@ y1=2x%, yo=x°

() yi=x3 yo=x2

€ y1=x% yo=x
3

d) y1=x% yo=x3 yz=x72

We determined that (a) was linearly dependent, (d) has the wrong
number of potential solutions, and y» = x 2 from set (b) doesn’t solve
the ODE. The function y», = x? from set (c) DOES solve the ODE.
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Nonhomogeneous Equations
Now we will consider the equation

dny dnf1y dy B
X" W—I—--'—G—&(X)a-i-ao(x)y—g(x)

where g is not the zero function. We'll continue to assume that a,
doesn’t vanish and that a; and g are continuous.

an(x) + an-1(x)

The associated homogeneous equation is

an y dn—1 y dy

dx’ W+"'+31(X)7+30(X)y:0.

an(x) ax

+ an_1(x)
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Write the associated homogeneous equation

(a) X3y///_2x2y//+3Xy/_|_17y _ 62X

Xj‘gm i 2){1‘9\\ 43y \9\ "'r}‘) -0
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Theorem: General Solution of Nonhomogeneous
Equation

Let y, be any solution of the nonhomogeneous equation, and let y1,

Yo, ..., ¥n be any fundamental solution set of the associated
homogeneous equation.

Then the general solution of the nonhomogeneous equation is

Y = c1y1(x) + caya(X) + - + Cnyn(X) + Yp(X)
— —
where ¢y, Co, ..., Cy are arbitrary constants. K

ke

Note the form of the solution y¢ + yp!
(complementary plus particular)
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Another Superposition Principle (for nonhomogeneous
eqns.)

Let yp,, Vps» - - -» Vp, b€ K particular solutions to the nonhomogeneous
linear equations

an an- 1 d
an) Y+ a0 T 4 a0+ ay = g(x)
fori=1,... ,k. Assume the domain of definition for all k equations is a
common interval /.
Then

Yo =VYpi t Yot Vp,
is a particular solution of the nonhomogeneous equation

an(x) ZZ}; + -+ ao(x)y = g1(x) + ga(X) + -+ + gk(X)-
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Example x?y” — 4xy’ + 6y = 36 — 14x

)
(a) Verify that q,(,f %z(")

Yp, =6 solves x2y” —4xy’ 4 6y = 36.

1 \
\3sz G Xz%p| -Mx ?)P, + (,\gh <
l: O
2, oY - Yy (o) + 6 (6) =
n - O
ﬁgfl tg (: - ES c)
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Example x2y” — 4xy’ + 6y = 36 — 14x
(b) Verify that

Yo, = —7x solves x%y" —4xy' +6y = —14x.

9,7 Tx xlgh" - wx»éri rGy,

Yo -3 (o) - Yx (-3) + (- ) -

(3?;”1 o) 28x -2y -
Uy = -IMx
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Example x2y” — 4xy’ + 6y = 36 — 14x

(c) Recall that yy = x2 and y» = x3 is a fundamental solution set of
x2y" —4xy' + 6y =0.

Use this along with results (a) and (b) to write the general solution of
x2y" — 4xy' + 6y = 36 — 14x.

From (@ owd (o) Qe \OPI*\:)P'- =6 x

N Y

Tie geneeat Soltron
4= VOV (S 3%

Ye %P
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Solve the IVP
X2y" —4xy' + By =36 —14x, y(1)=0, y'(1)=-5
The genend SlXiom L, OvE s
9 Cx Cz¥7+ C-Fx , 4= Gl e +6 -31:=0
\g': 2C, X + 3sz1_’+ , ‘;.|(‘)"ZC.'\*342‘1':)’ .-¢
¢+t | %:) 20, 426,22
2(, 43¢, ¢ 2 2¢, 43¢, = 2

-

—C-L:O

v\")r re Cz\/

February 11,2016  13/34



February 11, 2016

14 /34



Section 7: Reduction of Order

We’ll focus on second order, linear, homogeneous equations. Recall
that such an equation has the form

Let us assume that a>(x) # 0 on the interval of interest. We will write
our equation in standard form

d?y dy B
+P(x) o+ Q(x)y =0

dx?
where P = a;/a» and Q = ag/ ao.
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Y+ PX)% + Qx)y =0

Recall that every fundmantal solution set will consist of two linearly
independent solutions y4 and y», and the general solution will have the
form

y = c1y1(x) + caya(x).

Suppose we happen to know one solution y;(x). Reduction of order
is a method for finding a second linearly independent solution y»(x)
that starts with the assumption that

Ya(x) = u(x)y1(x)

for some function u(x). The method involves finding the function w.
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Example

Verify that y; = e ¥ is a solution of y” — y = 0. Then find a second
solution y» of the form

y2(x) = u(x)y1(x) = e *u(x).
Confirm that the pair y1, y» is linearly independent.
Veeky 4, Solwes Ho 00€:
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‘a\“_ué‘:g-e =0 e ODC
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Generalization

Consider the equation in standard form with one known solution.

Determine a second linearly independent solution.

a? d .
dx{ + P(x) di + Q(x)y =0, yi(x) — —is known.
AS‘“M \92 = \0\ (V. wilxy - Som~e ’\'\»l\(}‘ov\ \ ©
! \ |
Y, * Y,«w +Y, w

[} \ ! ! .
T e i

1}
SRS i
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"

y," + Poay, + Quag, =

O

0 g
gou' 2y w eyt P ((ﬂ‘u rae)r Qe Y s

o

‘g\w + (2‘;): + P(x)tg.}u‘ + (lg\n N \){x)\g: . @"“\J\) W =
—

QQCaM \a\ SQ\JQS -\‘1\b \\okoy,h,eovr ec,v\‘

L. \3\" + Pung“ + Qw)bé‘ =0
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