February 17 Math 3260 sec. 51 Spring 2020

Section 2.2: Inverse of a Matrix

Recall that if A is an $n \times n$ matrix, and if there exists an $n \times n$ matrix A^{-1} with the property

$$
A^{-1} A=A A^{-1}=l
$$

then we call
A^{-1} the inverse of A.

- If A has an inverse, we say it is nonsingular or invertible.
- Otherwise, we say it is singular or not invertible.

Theorem (2×2 case)

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. The number $a d-b c$ is called the determinant of the matrix A. If the determinant of A is not zero, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If the determinant of A is zero, then A is singular.

Algorithm for finding A^{-1}

To find the inverse of a given matrix A :

- Form the $n \times 2 n$ augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If $\operatorname{rref}(A)$ is I, then $\left[\begin{array}{ll}A & I\end{array}\right]$ is row equivalent to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$, and the inverse A^{-1} will be the last n columns of the reduced matrix.
- If $\operatorname{rref}(A)$ is $\operatorname{NOT} I$, then A is not invertible.

Remarks: We don't need to know ahead of time if A is invertible to use this algorithm.
If A is singular, we can stop as soon as it's clear that $\operatorname{rref}(A) \neq I$.

Examples: Find the Inverse if Possible
(b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0\end{array}\right]=A$ Set we augmented $\operatorname{matrix}[A I]$

$$
\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
5 & 6 & 0 & 0 & 0 & 1
\end{array}\right] \quad-5 R_{1}+R_{3} \rightarrow R_{3}
$$

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & -4 & -15 & -5 & 0 & 1
\end{array}\right] 4 R_{2}+R_{3} \rightarrow R_{3}
$$

$$
\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 0 & 0 \\
0 & 1 & 4 & 0 & 1 & 0 \\
0 & 0 & 1 & -5 & 4 & 1
\end{array}\right]-4 R_{3}+R_{2} \rightarrow R_{2}
$$

A is invertible (ark, a non singular) and

$$
A^{-1}=\left[\begin{array}{ccc}
-24 & 18 & 5 \\
20 & -15 & -4 \\
-5 & 4 & 1
\end{array}\right]
$$

Section 2.3: Characterization of Invertible Matrices

Given an $n \times n$ matrix A, we can think of

- A matrix equation $A \mathbf{x}=\mathbf{b}$;
- A linear system that has A as its coefficient matrix;
- A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$;
- Not to mention things like its pivots, its rref, the linear dependence/independence of its columns, blah blah blah...

Question: How is this stuff related, and how does being singular or invertible tie in?

Theorem: Suppose A is $n \times n$. The following are

 equivalent. ${ }^{1}$(a) A is invertible.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A are linearly independent.
(f) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one to one.
(g) $\boldsymbol{A} \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
(j) There exists an $n \times n$ matrix C such that $C A=I$.
(k) There exists an $n \times n$ matrix D such that $A D=I$.
(I) A^{T} is invertible.
${ }^{1}$ Meaning all are true or none are true.

Theorem: (An inverse matrix is unique.)
Let A and B be $n \times n$ matrices. If $A B=I$, then A and B are both invertible with $A^{-1}=B$ and $B^{-1}=A$.

This tells us that if A has a^{n} inverse, it has exactly one inverse.

Lt's show that B is invertible.
suppose $B \vec{x}=\overrightarrow{0}$. Multiply both sides by
A on the left.

$$
\begin{gathered}
A B \vec{x}=A \overrightarrow{0} \\
I \vec{x}=\overrightarrow{0} \\
\Rightarrow \quad \vec{x}=\overrightarrow{0}
\end{gathered}
$$

So $B \vec{x}=\overrightarrow{0}$ has only the trivial solution.

So B is invertiber $((d) \Rightarrow(a))$.
Since B^{-1} exists, we con use

$$
A B=I
$$

multiply on each rishtside by B^{-1}

$$
\begin{aligned}
A B B^{-1} & =I B^{-1} \\
A & =B^{-1}
\end{aligned}
$$

Recall that if a matrix is invertible, its inverse is also invertible; so A is invertible and

$$
A=B^{-1}
$$

taking the inverse of both sides

$$
\begin{aligned}
& A^{-1}=\left(B^{-1}\right)^{-1} \\
& A^{-1}=B .
\end{aligned}
$$

