February 18 MATH 1112 sec. 54 Spring 2019

Angles, Rotations, and Angle Measures
We define an angle by a pair of rays (say R_{1} and R_{2}) that share a common origin. We can indicate direction for an angle by indicating one ray as the initial ray and the other as the terminal ray.

We then define an angle as being positive if it is counter clock-wise and negative if it is clock-wise.

Angles in Standard Position

- Vertex at the origin

- initial ray is the

$$
+x \text {-axis }
$$

- The terming ray starts at $(0,0)$ and con so into any quadrant or along any axis.

Angles in Standard Position

Coterminal Angles

Figure: An angle in STANDARD POSITON has the $+x$-axis as its initial side. More than one angle may have the same terminal side. These are called co-terminal.

Degree Measure

Figure: We can asign a measure to the angle between an initial and terminal side. Degree measure is obtained by dividing one full rotation into 360 equal parts.

Coterminal Angles

Since we can measure clockwise (neg.) or counter clockwise (pos.), and can allow for full rotations, angles in standard position may be coterminal but of different measure.

$$
\alpha=\theta+360^{\circ}
$$

$$
\beta=\theta-360^{\circ}
$$

Figure: The three angles θ, α, and β have different measures but are coterminal. Note: Coterminal angles differ by a multiple of 360°.

Example

Find two angles that are coterminal with 30°. Choose one that is negative, and one whose measure is greater than 360°.

Simple answers would be
$30^{\circ}-360^{\circ}=-330^{\circ}$ is a negative r one $30^{\circ}+360^{\circ}=390^{\circ}$ is one large than 360°

Question

Recall that: Coterminal angles differ by a multiple of 360°.
Which of the following angles is coterminal with -45° ?
(a) 45°
(b) 135°

(c) 225°

Complementary and Supplementary Angles

Definition: Two positive angles whose measures sum to 90° are called complementary angles.

Definition: Two positive angles whose measures sum to 180° are called supplementary angles.

Example: Find the complementary and the supplementary angles for 38°.

$$
\text { Complement (Call it } \theta \text {) } \quad \theta+38^{\circ}=90^{\circ} \quad \theta=52^{\circ}
$$

Supplement (call it α) $\alpha+38^{\circ}=180^{\circ} \quad \alpha=142^{\circ}$

Question

Suppose θ is an angle whose measure is between 0° and 90°. The complementary angle to θ is
(a) $\theta+90^{\circ}$
(b) $\theta-90^{\circ}$
(c) $90^{\circ}-\theta$

$$
\theta+\left(90^{\circ}-\theta\right)=90^{\circ}
$$

(d) could be any one of the above depending on the actual measure of θ

Radian Measure (Some section 6.4)

Degree measure is sometimes used in technical fields (surveying and engineering). But degrees complicate many mathematical computations. We prefer another measure that is in some sense unitless ${ }^{1}$.

Radians: (Rad) An angle is measured in radians in relation to a unit circle (circle of radius 1).

An angle $\theta=1$ radian if the angle subtends an arc in a unit circle of length 1.

[^0] traditional sense.

A Radian

Figure: One Radian: The length of the arc equals the radius of the circle.

Radian Measure

The arc-length of a whole unit circle is 2π. So...
There are 2π radians in one circle (a little more than 6 of them)!

Converting Between Degrees \& Radians

Since $360^{\circ}=2 \pi$ rad, we get the following conversion factors:

$$
1^{\circ}=\frac{\pi}{180} \operatorname{rad} \quad \text { and } \quad 1 \mathrm{rad}=\left(\frac{180}{\pi}\right)^{\circ}
$$

Remark: If an angle doesn’t have the degree symbol ${ }^{\circ}$ next to it, it is assumed to be in radians!

Converting Between Angle Measures

- To convert from degrees to radians, multiply by

$$
\frac{\pi}{180} .
$$

- To convert from radians to degrees, multiply by
$\frac{180}{\pi}$ and insert the symbol \circ.

Example
Convert each angle measure to the other units.
(a) 45° to radians milt. by $\frac{\pi}{180} \quad 45\left(\frac{\pi}{180}\right)=\frac{45 \pi}{180}=\frac{\pi}{4}$

$$
45^{\circ}=\frac{\pi}{4} \mathrm{red}
$$

(b) $-\frac{\pi}{6}$ to degrees mult by $\frac{180}{\pi}$ add"" $\frac{-\pi}{6}\left(\frac{180}{\pi}\right)=\frac{-180}{6}=-30$

$$
-\frac{\pi}{6} \mathrm{rad}=-30^{\circ}
$$

(b) 30 to degrees malt, by $\frac{180}{\pi}$ add "o" $30\left(\frac{180}{\pi}\right)=\frac{5400}{\pi}$ $30 \mathrm{rad}=\left(\frac{5400}{\pi}\right)^{\circ}$

Question

If $\theta=-210^{\circ}$, then in radians
(a) $\theta=\frac{7 \pi}{6} \quad-210 \cdot \frac{\pi}{180}=-\frac{210}{180} \pi=-\frac{7 \pi}{6}$
(b) $\theta=-\frac{7 \pi}{6}$
(c) $\theta=\frac{6 \pi}{7}$
(d) $\theta=-\frac{6 \pi}{7}$
(e) there's no such thing as a negative angle

Some Common Angles: Degree and Radian

θ°	$\theta \mathrm{rad}$
0°	0
30°	$\frac{\pi}{6}$
45°	$\frac{\pi}{4}$
60°	$\frac{\pi}{3}$
90°	$\frac{\pi}{2}$
180°	π
270°	$\frac{3 \pi}{2}$
360°	2π

Angles With Nice Reference Angles

We Recall A Few Terms

Some special names for angles include:

- An acute angle is between 0° and $90^{\circ}\left(0\right.$ and $\left.\frac{\pi}{2}\right)$. Termind side in quadrmt I
- An obtuse angle is between 90° and $180^{\circ}\left(\frac{\pi}{2}\right.$ and $\left.\pi\right)$.
in quadrant II
- A right angle has measure $90^{\circ}\left(\frac{\pi}{2}\right)$.
- A reflex angle has measure between $180^{\circ}(\pi)$ and $360^{\circ}(2 \pi)$.
quad III or IV
- Quadrantal angles are integer multiples of $90^{\circ}\left(\frac{\pi}{2}\right)$
- A straight angle has measure $180^{\circ}(\pi)$.
(Of course, not all angles fit into one of these categories.)

Arclength Formula
Given a circle of radius r, the length s of the arc subtended by the (positive) central angle θ (in radians) is given by 1
vertex © Center

$$
s=r \theta
$$

The area of the resulting sector is $A_{\text {sector }}=\frac{1}{2} r^{2} \theta$.

Area of whole circle

$$
A_{\text {circle }}=\pi r^{2}
$$

Fraction of circle is $\frac{\theta}{2 \pi}$ Area of sector is area of circle x fraction of circle

$$
A_{\text {sector }}=\pi r^{2} \times\left(\frac{\theta}{2 \pi}\right)=\frac{1}{2} r^{2} \theta
$$

Example
A circle of radius 12 meters has a sector given by a central angle of 135°. Find the associated arc length and the area of the sector.

we need θ in radians

$$
B S^{\circ}=135\left(\frac{\pi}{180}\right) \mathrm{rod}=\frac{3 \pi}{4} \mathrm{rad} \quad r=12 \mathrm{~m} \text { (given) }
$$

arclength $\delta=(12 \mathrm{~m})\left(\frac{3 \pi}{4}\right)=9 \pi \mathrm{~m}$
area $\quad A_{\text {sector }}=\frac{1}{2}(12 \mathrm{~m})^{2}\left(\frac{3 \pi}{4}\right)=72 \mathrm{~m}^{2}\left(\frac{3 \pi}{4}\right)=54 \pi \mathrm{~m}^{2}$

[^0]: ${ }^{1}$ We'll still call them units, but it will become more clear that they aren't units in the

