February 18 Math 2306 sec. 54 Spring 2019

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Recall that such an equation has the form

$$
a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

Let us assume that $a_{2}(x) \neq 0$ on the interval of interest. We will write our equation in standard form

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

where $P=a_{1} / a_{2}$ and $Q=a_{0} / a_{2}$.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

Recall that every fundmantal solution set will consist of two linearly independent solutions y_{1} and y_{2}, and the general solution will have the form

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Suppose we happen to know one solution $y_{1}(x)$. Reduction of order is a method for finding a second linearly independent solution $y_{2}(x)$ that starts with the assumption that

$$
y_{2}(x)=u(x) y_{1}(x)
$$

u con't be constont due to linear
independence
for some function $u(x)$. The method involves finding the function u.

Generalization
Consider the equation in standard form with one known solution. Determine a second linearly independent solution.

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0, \quad y_{1}(x)-\text {-is known. }
$$

Because y, is a solution, we know that

$$
y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}=0
$$

Assume $y_{2}=u(x) y_{1}(x)$ substitute into the ODE

$$
\begin{aligned}
y_{2}^{\prime} & =u^{\prime} y_{1}+u y_{1}^{\prime} \\
y_{2}^{\prime \prime} & =u^{\prime \prime} y_{1}+u^{\prime} y_{1}^{\prime}+u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime} \\
& =u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}
\end{aligned}
$$

$$
\begin{gathered}
\underline{y}_{2}^{\prime \prime}+P(x) \underline{y}_{2}^{\prime}+Q(x) y_{2}=0 \\
u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}+P(x)\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right)+Q(x) u y_{1}=0
\end{gathered}
$$

Collect $u, u^{\prime}, u^{\prime \prime}$ terms

$$
\begin{aligned}
& u^{\prime \prime} y_{1}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}+\underbrace{\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right.}_{0^{\prime \prime} \text { since } y_{1} y_{\text {solve }}}) u=0 \\
& u^{\prime \prime} y_{1}+\left(2 y_{1}^{\prime}+P(x) y_{1}\right) u^{\prime}=0
\end{aligned}
$$

Let $w=w^{\prime}$ so that $w^{\prime}=w^{\prime \prime}$

The equation for w is $1^{\text {sp }}$ arden linear and separable

$$
y_{1} w^{\prime}+\left(2 y_{1}^{\prime}+p(x) y_{1}\right) w=0
$$

Let's assume that $W>0$ and separate variables

$$
\begin{array}{r}
y_{1} \frac{d w}{d x}=-\left(2 \frac{d y_{1}}{d x}+p(x) y_{1}\right) w \\
\frac{1}{w} \frac{d w}{d x}=-\frac{1}{y_{1}}\left(2 \frac{d y_{1}}{d x}+p(x) y_{1}\right) \\
\int \frac{1}{w} d w=-\int\left(\frac{2}{y_{1}} \frac{d y_{1}}{d x}+p(x)\right) d x
\end{array}
$$

February 15, $2019 \quad 10 / 39$

$$
\begin{aligned}
\int \frac{1}{w} d w & =-\int \frac{2}{y_{1}} \frac{d y_{1}}{d x} d x-\int p(x) d x \\
\int \frac{1}{w} d w & =\int \frac{-2}{y_{1}} d y_{1}-\int p(x) d x \\
\ln w & =-2 \ln \left|y_{1}\right|-\int p(x) d x \\
w & =e^{\ln y_{1}^{2}-\int p(x) d x}=e^{\ln y_{1}} \cdot e^{-\int p(x) d x} \\
W & =y_{1}^{-2} e^{-\int p(x) d x}
\end{aligned}
$$

$$
\begin{aligned}
& w=\frac{e^{\left.-\int \rho_{(x)}\right) x}}{\left(y_{1}\right)^{2}}, w=u^{\prime} \text { so } \\
& u=\int \frac{e^{-\int \rho_{(x)} d x}}{\left(y_{1}\right)^{2}} d x
\end{aligned}
$$

and $\quad y_{2}=u y_{1}$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \underbrace{\int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}}}_{u} d x
$$

Example
Find the general solution of the ODE given one known solution

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0, \quad y_{1}=x^{2}
$$

Let's assume $x>0$. Standard form

$$
\begin{gathered}
y^{\prime \prime}-\frac{3}{x} y^{\prime}+\frac{4}{x^{2}} y=0 \\
y_{2}=u y_{1} \text { when } u=\int \frac{e^{-\int p(x) d x}}{\left(y_{1}\right)^{2}} d x \\
P(x)=\frac{-3}{x} \\
e^{-\int(x) d x}=e^{-\int \frac{-3}{x} d x}=e^{\int \frac{3}{x} d x}=e^{3 \ln |x|}=e^{\ln x^{3}}=x^{3}
\end{gathered}
$$

and $\left(y_{1}\right)^{2}=\left(x^{2}\right)^{2}=x^{4}$

$$
u=\int \frac{e^{-\int \operatorname{pec} x d x}}{\left(y_{1}\right)^{2}} d x=\int \frac{x^{3}}{x^{4}} d x=\int \frac{1}{x} d x=\ln x
$$

So $y_{2}=n y_{1}=(\ln x) x^{2}=x^{2} \ln x$

The genera solution is

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x
$$

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients a, b, c constent

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0 . \quad a \neq 0
$$

Question: What sort of function y could be expected to satisfy

$$
y^{\prime \prime}=\text { constant } y^{\prime}+\text { constant } y ?
$$

$$
y=e^{m x} \text { should work }
$$

We look for solutions of the form $y=e^{m x}$ with m constant.

Substitute into $a y^{\prime \prime}+b y^{\prime}+c y=0$

$$
\begin{array}{ll}
y=e^{m x} & a\left(m^{2} e^{m x}\right)+b\left(m e^{m x}\right)+c\left(e^{m x}\right)=0 \\
y^{\prime}=m e^{m x} & e^{m x}\left(a m^{2}+b m+c\right)=0
\end{array}
$$

This holds if an solves

$$
a m^{2}+b m+c=0
$$

$a m^{2}+b m+C$ is called the charactaistic polynonicd for the ODE and

$$
a m^{2}+b n+c=0
$$

is the characteristic equation.

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \text { where } b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \quad \text { where } \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Show that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are linearly independent.
Using the wronskian

$$
\begin{aligned}
W\left(y_{1} y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
e^{m_{1} x} & e^{m_{2} x} \\
m_{1} e^{m_{1} x} & m_{2} e^{m_{2 x}}
\end{array}\right| \\
& =e^{m_{1 x}}\left(m_{2} e^{m_{2} x}\right)-m_{1} e^{m_{1} x} e^{m_{2} x}
\end{aligned}
$$

$$
W\left(y_{1}, m_{2}\right)(x)=\left(m_{2}-m_{1}\right) e^{\left(m_{1}+m_{2}\right) x}
$$

Claim: $W \neq 0$
Note $m_{2}-m_{1} \neq 0$ since $m_{1} \neq m_{2}$

