February 18 Math 2306 sec 58 Spring 2016

Section 7: Reduction of Order

We’ll focus on second order, linear, homogeneous equations. Such an
equation in standard form looks like

d?y dy
W + P(X)a + Q(X)y =0

We are assuming that one solution y;(x) is known, and we seek a
second linearly independent solution y» of the form

Y2(x) = u(x)y1(x) for some function u.
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Generalization

Consider the equation in standard form with one known solution.
Determine a second linearly independent solution.

d?y

ax2 + P(x ) +Q(X) 0, yi(x)— —is known.

We set y» = yyu and upon substitution found that u solves the ODE
yid" + (2y; + P(x)y;)u =0

It remains to solve this equation for u and then write the second

solution ys».
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Reduction of Order Formula

For the second order, homogeneous equation in standard form with
one known solution y4, a second linearly independent solution y» is

given by
e—fP(x)dx
= V(X adx
=) [ oo
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Example
Find the general solution of the ODE given one known solution

x2y" —3xy' +4y =0, y =x? X>0
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Example

Find the solution of the IVP where one solution of the ODE is given.

Y'+4y +4y=0 y;=e%, y0)=1, y(0)=-2

P-4 - ff’méy o - [udx = -4x
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Section 8: Homogeneous Equations with Constant

Coefficients

We consider a second order, linear, homogeneous equation with
constant coefficients

d?y  , dy

Question: What sort of function y could be expected to satisfy

y"” = constant y’ + constant y?
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We look for solutions of the form y = e™ with m
constant.
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Auxiliary a.k.a. Characteristic Equation

am®*+bm+c=0

There are three cases:
| b? — 4ac > 0 and there are two distinct real roots my # my

Il b2 — 4ac = 0 and there is one repeated real root my = mp, = m
Il b? — 4ac < 0 and there are two roots that are complex conjugates

my 2 :Oé:i:iﬁ
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Case I: Two distinct real roots

ay’ +by' +cy =0, where b?—4ac>0

—b+ Vb2 —4ac
y =c1e™M* 4+ ce™* where myp = 2

Show that y; = e™* and y» = €™ are linearly independent.
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