February 18 Math 2306 sec 59 Spring 2016

Section 7: Reduction of Order

We'll focus on second order, linear, homogeneous equations. Such an equation in standard form looks like

$$
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=0
$$

We are assuming that one solution $y_{1}(x)$ is known, and we seek a second linearly independent solution y_{2} of the form

$$
y_{2}(x)=u(x) y_{1}(x) \quad \text { for some function } u
$$

Reduction of Order Formula

For the second order, homogeneous equation in standard form with one known solution y_{1}, a second linearly independent solution y_{2} is given by

$$
y_{2}=y_{1}(x) \int \frac{e^{-\int P(x) d x}}{\left(y_{1}(x)\right)^{2}} d x
$$

Example
Find the solution of the IVP where one solution of the ODE is given.

$$
y^{\prime \prime}+4 y^{\prime}+4 y=0 \quad y_{1}=e^{-2 x}, \quad y(0)=1, \quad y^{\prime}(0)=-2
$$

Use reduction of order to find y_{2}

$$
\begin{aligned}
& y_{2}=u y_{1} \text { where } u=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}\right)^{2}} d x \\
& P(x)=4 \text { so }-\int \rho(x) d x=-\int 4 d x=-4 x
\end{aligned}
$$

So

$$
u=\int \frac{e^{-4 x}}{\left(e^{-2 x}\right)^{2}} d x=\int \frac{e^{-4 x}}{e^{-4 x}} d x=\int d x=x
$$

So $y_{2}=u y_{1}=x e^{-2 x}$
The geneal solution to the ODE is

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}
$$

Apply $y(0)=1$ and $y^{\prime}(0)=-2$

$$
\begin{array}{r}
y^{\prime}=-2 c_{1} e^{-2 x}+c_{2} e^{-2 x}-2 c_{2} x e^{-2 x} \\
y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=1 \Rightarrow c_{1}=1 \\
y^{\prime}(0)=-2 c_{1} e^{0}+c_{2} e^{0}-2 c_{2} \cdot 0 e^{0}=-2 \\
-2+c_{2}=-2 \Rightarrow c_{2}=0
\end{array}
$$

The solution to the IV P is

$$
y=e^{-2 x}
$$

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Question: What sort of function y could be expected to satisfy

$$
y^{\prime \prime}=\text { constant } y^{\prime}+\text { constant } y ?
$$

We look for solutions of the form $y=e^{m x}$ with m constant.

$$
\begin{array}{cc}
a y^{\prime \prime}+b y^{\prime}+c y=0 \\
y=e^{m x} & a y^{\prime \prime}+b y^{\prime}+c y= \\
y^{\prime}=m e^{m x} & a m^{2} e^{m x}+b m e^{m x}+c e^{m x}=0 \\
y^{\prime \prime}=m^{2} e^{m x} & e^{m x}\left(a m^{2}+b m+c\right)=0
\end{array}
$$

This will be true if m solves the quadratic equation

$$
a m^{2}+b m+c=0
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \quad \text { where } \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Show that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are linearly independent.
Let's compute the Wronskian

$$
w\left(y_{1}, y_{2}\right)(x)=\left|\begin{array}{cc}
e^{m_{1} x} & e^{m_{2} x} \\
m_{1} e^{m_{1} x} & m_{2} e^{m_{2} x}
\end{array}\right|
$$

$$
\begin{aligned}
& =e^{m_{1} x}\left(m_{2} e^{m_{2} x}\right)-m_{1} e^{m_{1} x} \cdot e^{m_{2} x} \\
& =e^{\left(m_{1}+m_{2}\right) x}\left(m_{2}-m_{1}\right) \neq 0
\end{aligned}
$$

If $w\left(y_{1}, y_{2}\right)(x)=0$, this wall require

$$
m_{2}-m_{1}=0 \quad \text { i.e. } m_{2}=m_{1}
$$

But $m_{1} \neq m_{2}$ in this case.

Example
Find the general solution of the ODE

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

Characteristic equation: $\quad m^{2}-2 m-2=0$
let's complete the square

$$
\begin{aligned}
m^{2}-2 m-2 & =m^{2}-2 m+1-1-2 \\
& =\left(m^{2}-2 m+1\right)-3=0 \\
(m-1)^{2}=3 & \Rightarrow m-1= \pm \sqrt{3}
\end{aligned}
$$

So $\quad m_{1}=1+\sqrt{3}, \quad m_{2}=1-\sqrt{3}$
2 different real roots.
Hence $y_{1}=e^{(1+\sqrt{3}) x}$ and $y_{2}=e^{(1-\sqrt{3}) x}$

And the general solution is

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

