February 1 MATH 1112 sec. 54 Spring 2019

Section 5.1: Quick Review of Inverse Functions

Suppose we have the function $y=f(x)$ where $f(x)=x^{3}-1$. We can say
when the input $x=2$, the output $y=7$.

We can also say it the other way around
when the output $y=7$, the input $x=2$.

Inverse Functions

It doesn't always work so nicely. Consider the example

$$
f(x)=x^{2}
$$

While we can say with confidence

$$
\text { when the input } x=2 \text {, the output } y=4 \text {, }
$$

We can't be sure what the input is when the output is 4 .

Why do I make that claim?

One to One

Definition: A function f is one to one if different inputs have different outputs. That is f is one to one provided

$$
a \neq b \quad \text { implies } \quad f(a) \neq f(b)
$$

Equivalently, f is a one to one function provided

$$
f(a)=f(b) \quad \text { implies } \quad a=b
$$

Horizontal Line Test: A function $f(x)$ is one to one if and only if the graph of $y=f(x)$ is intersected at most one time by every horizontal line.

Horizontal Line Test

Figure: Left: A one to one function. Right: A function that is not one to one,

Question

Which of the following is the graph of a one to one function? (Hint: Horizontal Line Test)

Inverse Function

Theorem: If f is a one to one function with domain D and range R, then its inverse f^{-1} is a function with domain R and range D.
Moreover, the inverse function is defined by

$$
f^{-1}(x)=y \text { if and only if } f(y)=x .
$$

Characteristic Compositions:

If f is a one to one function with domain D, range R, and with inverse function f^{-1}, then

- for each x in $D,\left(f^{-1} \circ f\right)(x)=x$, and
- for each x in $R,\left(f \circ f^{-1}\right)(x)=x$.

Inverse Function Example

$$
f(x)=\frac{1}{x-2} \quad \text { and } \quad f^{-1}(x)=\frac{1+2 x}{x}
$$

Evaluate $\left(f \circ f^{-1}\right)(x)$ or $\left(f^{-1} \circ f\right)(x)$

$$
\begin{aligned}
&\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f\left(\frac{1+2 x}{x}\right)=\frac{1}{\left(\frac{1+2 x}{x}\right)-2} \\
&=\left(\frac{1}{\frac{1+2 x}{x}-2}\right) \cdot\left(\frac{x}{x}\right) \quad \begin{array}{c}
\text { clear fractions } \\
\text { multiply by }
\end{array} \\
& 1=\frac{x}{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x}{1+2 x-2 x} \\
& =\frac{x}{1}=x
\end{aligned}
$$

Question

The function $f(x)=\sqrt[3]{x-1}$ is one to one. Which of the following is its inverse function? (Hint: Check compositions $\left(f^{-1} \circ f\right)(x)$.)
(a) $f^{-1}(x)=(x+1)^{3}$
(c)

$$
f^{-1}(f(x))=f^{-1}(\sqrt[3]{x-1})
$$

$$
=(\sqrt[3]{x-1})^{3}+1
$$

(c) $f^{-1}(x)=x^{3}+1$
$=(x-1)+1$
(d) $f^{-1}(x)=x^{3}-1$
$=x$

Graphs

If (a, b) is a point on the graph of a function, then (b, a) is a point on the graph of its inverse. So the graph of f^{-1} is obtained by reflecting the graph of f in the line $y=x$.

Restricting the Domain

Sometimes we wish to define an inverse function when a given function is not, in general, one to one. This can be done by restricting the domain of the original function.

The classic example would be the square root. Note $f(x)=x^{2}$ is not one to one if its domain is $(-\infty, \infty)$. However, if we consider the function $F(x)=x^{2}$ for $0 \leq x<\infty$, this function is one to one with inverse $F^{-1}(x)=\sqrt{x}$.

Restricting the Domain

Figure: If the domain of $y=x^{2}$ is restricted to $[0, \infty)$, the graph passes the horizontal line test.

Section 5.2: Exponential Functions

Many models involve quantities that change at a rate proportional to the quantity itself.

- money in an account with compounded interest,
- bacteria growing in a culture,
- the mass of a substance undergoing radio active decay These grow or decay in a fashion that is very different from polynomials and rational functions.

The study of how functions change is a big part of Calculus. Here, we will define exponential functions and examine some of their properties.

Exponential Functions

Definition: Let a be a positive real number different from 1-i.e. $a>0$ and $a \neq 1$. The function

$$
f(x)=a^{x}
$$

is called the exponential function of base a. Its domain is $(-\infty, \infty)$, and its range is $(0, \infty)$.

Some examples of exponential functions are

$$
f(x)=2^{x}, \quad g(x)=\left(\frac{1}{3}\right)^{x}, \quad \text { and } \quad h(x)=\pi^{x-1}
$$

Observation

We don't want to confuse exponential and power functions. Note that in an exponential function

$$
f(x)=4^{x}
$$

the base is a constant, and the exponent is a variable. Contrast a
power function

$$
f(x)=x^{4}
$$

in which the base is variable, and the exponent is a constant.

Graphs of Exponential Functions

Figure: $f(x)=2^{x}$ Note that the function is everywhere increasing. The x-axis is a horizontal asymptote.

Graphs of Exponential Functions

Figure: $f(x)=\left(\frac{1}{3}\right)^{x}$ Note that the function is everywhere decreasing. The x-axis is a horizontal asymptote.

Graphs of Exponential Functions

Figure: $f(x)=a^{x}$ is increasing if $a>1$ and decreasing if $0<a<1$. The line $y=0$ is a horizontal asymptote for every value of a. Each graph has y-intercept $(0,1)$. Each graph is strictly above the x-axis.

