February 1 Math 3260 sec. 55 Spring 2018

Section 1.5: Solution Sets of Linear Systems

We considered the homogeneous system

and found the solutions could be described in parametric vector form

$$\mathbf{X} = t \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}, \quad -\infty < t < \infty$$

This includes both the trivial solution ($\mathbf{x} = \mathbf{0}$ when t = 0) as well as nontrivial solutions ($\mathbf{x} \neq \mathbf{0}$).

January 31, 2018

Nonhomogenous Systems

We then solved the following **nonhomogenous** system

and found that the solutions could be described in parametric vector form

$$\mathbf{X} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} + t \begin{bmatrix} \frac{4}{3} \\ 0 \\ 1 \end{bmatrix}, \quad -\infty < t < \infty$$

We observe that this has the form $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ where \mathbf{v} was the solution to the associated homogeneous equation (one with the same left hand side).

Theorem

Suppose the equation $A\mathbf{x} = \mathbf{b}$ is consistent for a given **b**. Let **p** be a solution. Then the solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form

$$\mathbf{x} = \mathbf{p} + \mathbf{v}_h,$$

where \mathbf{v}_h is any solution of the associated homogeneous equation $A\mathbf{x} = \mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

January 31, 2018

Example

Find the solution set of the following system. Express the solution set in parametric vector form.

$$x_1 + x_2 - 2x_3 + 4x_4 = 1$$

 $2x_1 + 3x_2 - 6x_3 + 12x_4 = 4$

Has orignmented matrix $\begin{bmatrix} 1 & 1 & -2 & 4 & 1 \\ 2 & 3 & -6 & 12 & 4 \end{bmatrix}$ $\frac{\text{rref}}{3} \begin{bmatrix} 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & -2 & 4 & 2 \end{bmatrix}$

Section 1.7: Linear Independence

We already know that a homogeneous equation $A\mathbf{x} = \mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ as

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{0}.$$

イロト 不得 トイヨト イヨト ヨー ろくの January 31, 2018

6/22

And, we know that at least one solution (the trivial one $x_1 = x_2 = \cdots = x_n = 0$ always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$.

Definition: Linear Dependence/Independence

An indexed set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbb{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

The set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists a set of weights $c_1, c_2, ..., c_p$ at least one of which is nonzero such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots c_p\mathbf{v}_p=\mathbf{0}.$$

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_p \mathbf{v}_p = \mathbf{0}$, with at least one $c_i \neq 0$, is called a **linear dependence relation**.

Special Cases

A set with two vectors $\{v_1, v_2\}$ is linearly dependent if one is a scalar multiple of the other.

Suppose
$$\{V_1, V_2\}$$
 is fin. dependent. Then there exist
 C_1, C_2 , at least one being ronzero such that
 $C_1, V_1 + C_2, V_2 = 0$. Suppose $C_1 \neq 0$.
Then $C_1, V_1 = -C_2, V_2$. Divide by C_1
 $V_1 = -\frac{C_2}{C_1}, V_2 = K, V_2$ where $K = -\frac{C_2}{C_1}$.
So fin. dependence is equivalent to one vector
being a meltiple of the other.

Example

Determine if the set is linearly dependent or linearly independent.

(a)
$$\mathbf{v}_1 = \begin{bmatrix} 2\\4 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1\\-2 \end{bmatrix}$ Lin. dependent
write $\vec{v}_1 = -2\vec{v}_2$ (also $\vec{v}_2 = \vec{z}\vec{v}_1$)
A lin, dependence relation is $\vec{v}_1 + 2\vec{v}_2 = \vec{0}$.
(b) $\mathbf{v}_1 = \begin{bmatrix} 2\\4 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1\\2 \end{bmatrix}$ Lin. independent
It is true that $\vec{v}_1 \neq k\vec{v}_2$ for any on
 $\vec{v}_1 \neq k\vec{v}_2$ for any on

12

イロト イヨト イヨト イヨト

More than Two Vectors

Theorem: The columns of a matrix *A* are linearly **independent** if and only if the homogeneous equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

$$A\vec{x} = \vec{0}$$
 is the vector equation
 $\vec{x}, \vec{a}, \pm \vec{x}, \vec{a}_2 \pm \dots \pm \vec{x}, \vec{a}_n \equiv \vec{0}$
where $A = [\vec{a}, \vec{a}_2 \cdots \vec{a}_n]$

イロト 不得 トイヨト イヨト 二日

January 31, 2018

Example

Determine if the set of vectors is linearly dependent or independent. If dependent, find a linear dependence relation.

(a)
$$\left\{ \begin{bmatrix} 2\\3\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\3\\3\\3 \end{bmatrix} \right\}$$
 we can avaat a matrix sing the verters as columns.

$$W = \left\{ \begin{bmatrix} 2 & 0 & 1\\3 & 0 & 0\\0 & 2 & 3\\0 & 1 & 3 \end{bmatrix} \right\}$$
 Consider $Ax = \delta$ by doing ret on $\begin{bmatrix} A & \delta \end{bmatrix}$

$$\left\{ A = \begin{bmatrix} 2 & 0 & 1\\3 & 0 & 0\\0 & 2 & 3\\0 & 1 & 3 \end{bmatrix}$$
 ret on $\begin{bmatrix} A & \delta \end{bmatrix}$

$$\left\{ A = \begin{bmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 0 & 0 \end{bmatrix}$$

$$\left\{ A = \begin{bmatrix} 0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0 & 0 \end{bmatrix} \right\}$$

Solution reads as $x_1 = 0$ $x_2 = 0$ $x_3 = 0$ No free variabler. Hence $A\vec{x} = \vec{0}$ has only the trivial solution.

January 31, 2018 12 / 22

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Determine if the set of vectors is linearly dependent or independent. If dependent, find a linear dependence relation.

(b)
$$\begin{cases} \begin{bmatrix} 2 \\ 3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 3 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix} \end{cases}$$
Again we deate a metrix.
Conside $AX = \vec{0}$

$$M = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 0 & 2 & 3 & 2 \\ 0 & 1 & 3 & 0 \end{bmatrix}$$

$$rref of \begin{bmatrix} A & 0 \\ A & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{1}{3} & 0 \\ 0 & 1 & 0 & \frac{1}{3} & 0 \\ 0 & 1 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$rref of \begin{bmatrix} A & 0 \\ A & 0 \end{bmatrix}$$

We have a free variable share nontrivial solutions to AX= 0. The redors are linearly dependent. we can interpret the ref as $v_{11} = \frac{1}{3}v_1 + 2v_2 - \frac{2}{3}v_3$. A line en dependence relation is $\frac{1}{2}\vec{v}_1 - 2\vec{v}_2 + \frac{2}{3}\vec{v}_3 + \vec{v}_4 = 0$

> < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで January 31, 2018 14 / 22

Theorem

An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let **u** and **v** be any nonzero vectors in \mathbb{R}^3 . Show that if **w** is any vector in Span{**u**, **v**}, then the set {**u**, **v**, **w**} is linearly **dependent**.

Since \overline{W} is in Span $\{\overline{U}, \overline{V}\}$, then exist Scalers C., C2 such that $\overline{W} = C, \overline{U} + C_2 \overline{V}$. Subtract \overline{W} to get

January 31, 2018

 $C_1 \vec{u} + C_2 \vec{v} - \vec{w} = \vec{0}$

The coefficients are C1, C2, and -1. At least one of these is nonzero (since -1=0). This is a lineer dependence relation.

{ i, v, w} is Directly dependent.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$\mathbf{v}_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad \text{and} \quad \mathbf{v}_{3} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$$
Examine each set { $\mathbf{v}_{1}, \mathbf{v}_{2}$ }, { $\mathbf{v}_{1}, \mathbf{v}_{3}$ }, { $\mathbf{v}_{2}, \mathbf{v}_{3}$ }, and { $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ }.
The first 3 sets are lin independent.
But
 $\mathbf{v}_{2} = \mathbf{v}_{2} - \mathbf{v}_{1}$
s. { $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ } is lin, dependent.

Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly **dependent**. That is, if $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ is a set of vector in \mathbb{R}^n , and p > n, then the set is linearly dependent.

Theorem: Any set of vectors that contains the zero vector is linearly **dependent**.

Determine if the set is linearly dependent or linearly independent

(a)
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\3\\-5 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3 \end{bmatrix} \right\}$$

y vector in \mathbb{R}^3

<ロ ト イ 昂 ト イ ヨ ト イ ヨ ト ヨ の へ で January 31, 2018 20 / 22

Determine if the set is linearly dependent or linearly independent

(b)
$$\left\{ \begin{bmatrix} 2\\2\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\4\\-8\\1 \end{bmatrix}, \right\}$$

Lin, Dependent, contains $\vec{0}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Determine if the set is linearly dependent or linearly independent

(c)
$$\left\{ \begin{bmatrix} 1\\ 1\\ -1\\ -1 \end{bmatrix}, \begin{bmatrix} -2\\ -2\\ 2\\ 2\\ 2 \end{bmatrix} \right\}$$
 Note $V_2 = -2V_1$
 $V_1 = V_2$ Lin. Dependent.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □