February 1 Math 3260 sec. 56 Spring 2018

Section 1.5: Solution Sets of Linear Systems
We considered the homogeneous system

$$
\begin{array}{r}
3 x_{1}+5 x_{2}-4 x_{3}=0 \\
-3 x_{1}-2 x_{2}+4 x_{3}=0 \\
6 x_{1}+x_{2}-8 x_{3}=0
\end{array}
$$

and found the solutions could be described in parametric vector form

$$
\mathbf{x}=t\left[\begin{array}{l}
\frac{4}{3} \\
0 \\
1
\end{array}\right], \quad-\infty<t<\infty
$$

This includes both the trivial solution $(\mathbf{x}=\mathbf{0}$ when $t=0)$ as well as nontrivial solutions ($\mathbf{x} \neq \mathbf{0}$).

Nonhomogenous Systems

We then solved the following nonhomogenous system

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}-4 x_{3}=7 \\
& -3 x_{1}-2 x_{2}+4 x_{3}=-1 \\
& 6 x_{1}+x_{2}-8 x_{3}=-4
\end{aligned}
$$

and found that the solutions could be described in parametric vector form

$$
\mathbf{x}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]+t\left[\begin{array}{l}
\frac{4}{3} \\
0 \\
1
\end{array}\right], \quad-\infty<t<\infty
$$

We observe that this has the form $\mathbf{x}=\mathbf{p}+t \mathbf{v}$ where \mathbf{v} was the solution to the associated homogeneous equation (one with the same left hand side).

Theorem

Suppose the equation $A \mathbf{x}=\mathbf{b}$ is consistent for a given \mathbf{b}. Let \mathbf{p} be a solution. Then the solution set of $A \mathbf{x}=\mathbf{b}$ is the set of all vectors of the form

$$
\mathbf{x}=\mathbf{p}+\mathbf{v}_{h}
$$

where \mathbf{v}_{h} is any solution of the associated homogeneous equation $A \mathbf{x}=\mathbf{0}$.

We can use a row reduction technique to get all parts of the solution in one process.

Example

Find the solution set of the following system. Express the solution set in parametric vector form.

$$
\begin{array}{r}
x_{1}+x_{2}-2 x_{3}+4 x_{4}=1 \\
2 x_{1}+3 x_{2}-6 x_{3}+12 x_{4}=4
\end{array}
$$

The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 1 & -2 & 4 & 1 \\
2 & 3 & -6 & 12 & 4
\end{array}\right]} \\
& \underset{\operatorname{rref}}{\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -2 & 4 & 2
\end{array}\right]}
\end{aligned}
$$

From the ref

$$
\begin{aligned}
& x_{1}=-1 \\
& x_{2}=2+2 x_{3}-4 x_{4} \\
& x_{3}, x_{4} \text {-free }
\end{aligned}
$$

The solutions \vec{x} have the form

$$
\begin{aligned}
& \vec{x}=\begin{array}{l}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]}
\end{array}=\underbrace{\left[\begin{array}{c}
-1 \\
2+2 x_{3}-4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right]=}_{\vec{P}} \underbrace{\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]}_{\vec{V}_{h}}+\left[\begin{array}{c}
0 \\
2 x_{3} \\
x_{3} \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-4 x_{4} \\
0 \\
x_{4}
\end{array}\right] \\
&= {\left[\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
0 \\
1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Section 1.7: Linear Independence

We already know that a homogeneous equation $A \mathbf{x}=\mathbf{0}$ can be thought of as an equation in the column vectors of the matrix $A=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}\end{array}\right]$ as

$$
x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots x_{n} \mathbf{a}_{n}=\mathbf{0}
$$

And, we know that at least one solution (the trivial one $x_{1}=x_{2}=\cdots=x_{n}=0$) always exists.

Whether or not there is a nontrivial solution gives us a way to characterize the vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$.

Definition: Linear Dependence/Independence

An indexed set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is said to be linearly independent if the vector equation

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.
The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is said to be linearly dependent if there exists a set of weights $c_{1}, c_{2}, \ldots, c_{p}$ at least one of which is nonzero such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

(i.e. Provided the homogeneous equation posses a nontrivial solution.)

An equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots c_{p} \mathbf{v}_{p}=\mathbf{0}$, with at least one $c_{i} \neq 0$, is called a linear dependence relation.

Special Cases
A set with two vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if one is a scalar multiple of the other.
suppose $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is lin. dependent. Then there exists C_{1}, C_{2} with at least one nonzero such that $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}$. Assume $c_{1} \neq 0$. Then $c_{1} \vec{V}_{1}=-c_{2} \vec{v}_{2}$. Divide by c_{1} $\vec{V}_{1}=\frac{-C_{2}}{c_{1}} \vec{V}_{2}=k \vec{V}_{2}$ where $k=\frac{-c_{2}}{c_{1}}$.
So for 2 vectors, linear dependence is equivalent to one binning a multiple of the other.

Example
Determine if the set is linearly dependent or linearly independent.
(a) $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 4\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ -2\end{array}\right]$

Lin. Dependent.

$$
\vec{v}_{1}=-2 \vec{v}_{2} \text { ie, } \vec{v}_{2}=\frac{-1}{2} \vec{V}_{1}
$$

A liner dependence relation is $\vec{V}_{1}+2 \vec{V}_{2}=\vec{O}$
(b) $\mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 4\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2\end{array}\right] \quad \begin{aligned} & \text { Lin. Independent } \\ & \text { Note } \vec{V}_{1} \neq k \vec{v}_{2}\end{aligned}$ for any one sealer k.

More than Two Vectors

Theorem: The columns of a matrix A are linearly independent if and only if the homogeneous equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
$A \vec{x}=\overrightarrow{0}$ is equivalent to the vector n equation

$$
\begin{aligned}
& x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\ldots+x_{n} \vec{a}_{n}=\stackrel{\rightharpoonup}{0} \\
& \text { If } A=\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} \ldots & \vec{a}_{n}
\end{array}\right]
\end{aligned}
$$

Example
Determine if the set of vectors is linearly dependent or independent. If dependent, find a linear dependence relation.
(a) $\left\{\underset{V_{1}}{\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 0\end{array}\right]} \underset{\vec{V}_{2}}{\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 1\end{array}\right]} \underset{V_{V_{3}}}{\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 3\end{array}\right]}\right\}$
well use a matrix and consider an equation

$$
A \vec{x}=\overrightarrow{0}
$$

Let $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 3 & 0 & 0 \\ 0 & 2 & 3 \\ 0 & 1 & 3\end{array}\right] \quad\left[\begin{array}{ll}A & 0\end{array}\right] \xrightarrow{\text { ref }}\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
no free variables
\Rightarrow no nontrivide solutions

January 31, $2018 \quad 11 / 22$

$$
x_{1}=0, x_{2}=0, x_{3}=0 \quad \text { ie. } \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0}
$$

Since $A \vec{x}=\overrightarrow{0}$ has only $^{\prime}$ the trivia solution, the set of vectors is linearly independent.

Determine if the set of vectors is linearly dependent or independent. If dependent, find a linear dependence relation.
(b) $\begin{gathered}\left\{\left[\begin{array}{l}2 \\ 3 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 0\end{array}\right]\right\} \text { Again well consider } \\ \text { on equation } \\ \vec{v}_{1} \quad \vec{v}_{2}=\overrightarrow{0}\end{gathered}$

Let $A=\left[\begin{array}{llll}2 & 0 & 1 & 0 \\ 3 & 0 & 0 & 1 \\ 0 & 2 & 3 & 2 \\ 0 & 1 & 3 & 0\end{array}\right] \quad\left[\begin{array}{ll}A & 0\end{array}\right] \rightarrow \begin{array}{ccccc}\text { ref }\end{array}\left[\begin{array}{cccc}1 & 0 & 0 & \frac{1}{3} \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & \frac{2}{3} \\ 0 \\ 0 & 0 & 0 & 0 \\ 0\end{array}\right]$
free variable

Since thai's a free variable, there are nontrivial Solutions to $A \vec{x}=\overrightarrow{0}$.

The set is limerly dependent.

From the matrix

$$
\vec{V}_{4}=\frac{1}{3} \vec{V}_{1}+2 \vec{V}_{2}-\frac{2}{3} \vec{V}_{3}
$$

A linear dependence relation is

$$
-\frac{1}{3} \vec{V}_{1}-2 \vec{V}_{2}+\frac{2}{3} \vec{V}_{3}+\vec{V}_{4}=\overrightarrow{0}^{0}
$$

Theorem
An indexed set of two or more vectors is linearly dependent if and only if at least one vector in the set is a linear combination of the others in the set.

Example: Let \mathbf{u} and \mathbf{v} be any nonzero vectors in \mathbb{R}^{3}. Show that if \mathbf{w} is any vector in $\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$, then the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.

Suppose \vec{W} is in $\operatorname{spon}\{\vec{u}, \vec{v}\}$. Then there exist
scales C_{1}, C_{2} such that

$$
\vec{w}=C_{1} \vec{u}+c_{2} \stackrel{\rightharpoonup}{v}
$$

$$
\text { From this, } \quad c_{1} \vec{u}+c_{2} \vec{v}-\vec{w}=\overrightarrow{0}
$$

This is a linear dependence relation on $\{\vec{u}, \vec{v}, \vec{w}\}$ because at least one of the coefficients is nonzero (since $-1 \neq 0$).

The set must be limarly dependent.

Caveat!

A set may be linearly dependent even if all proper subsets are linearly independent. For example, consider

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Examine each set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\},\left\{\mathbf{v}_{1}, \mathbf{v}_{3}\right\},\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$.
The sets of 2 are all linearly
independent. But $\vec{V}_{3}=\vec{V}_{2}-\vec{V}_{1}$
Hence the set of all three is
linear, dependent.

Two More Theorems

Theorem: If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\}$ is a set of vector in \mathbb{R}^{n}, and $p>n$, then the set is linearly dependent.

$$
\begin{aligned}
& \text { E.g. } 5 \text { vectors in } \mathbb{R}^{3} \\
& \text { or } 26 \text { vectors in } \mathbb{R}^{17}
\end{aligned}
$$

Theorem: Any set of vectors that contains the zero vector is linearly dependent.

Determine if the set is linearly dependent or linearly independent
(a) $\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ 3 \\ -5\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 3\end{array}\right]\right\}$

4 vectors in \mathbb{R}^{3}, theyire linearly dependent.

Determine if the set is linearly dependent or linearly independent
(b) $\left.\underset{\vec{v}_{1}}{\left\{\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 0\end{array}\right]\right.} \underset{\underset{0}{0}}{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]}, \underset{V_{2}}{\left[\begin{array}{c}2 \\ 4 \\ -8 \\ 1\end{array}\right]},\right\}$

Note

$$
\begin{array}{r}
O \vec{v}_{1}+37 \vec{O}+O \vec{v}_{2}=\overrightarrow{0} \\
\text { a lin. dpenendena } \\
\text { relation }
\end{array}
$$

Contains the zeno vector \Rightarrow
lin. dependent

Determine if the set is linearly dependent or linearly independent
(c) $\left\{\left[\begin{array}{c}1 \\ 1 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ -2 \\ 2 \\ 2\end{array}\right]\right\}$
$\vec{v}_{2}=-2 \vec{v}_{1}$ $\vec{v}_{1} \quad \vec{v}_{2}$

Ore's a multiple of the other.
They are lin. dependent.

