February 20 Math 2306 sec. 57 Spring 2018

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order ${ }^{1}$, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Question: What sort of function y could be expected to satisfy

$$
y^{\prime \prime}=\text { constant } y^{\prime}+\text { constant } y ?
$$

[^0]We look for solutions of the form $y=e^{m x}$ with m constant.

Supposed to solve

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Substitute

$$
\begin{gathered}
y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x} \\
a m^{2} e^{m x}+b m e^{m x}+c e^{m x}=0 \\
e^{m x}\left(a m^{2}+b m+c\right)=0
\end{gathered}
$$

This holds for all x in some interval
if $\quad a m^{2}+b m+c=0$

So $y=e^{m x}$ will be a solution if
m is a root of the quadratic equation $\quad a m^{2}+b m+c=0$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \quad \text { where } \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Show that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ are linearly independent.
Here $m_{1} \neq m_{2}$. Using the Wrowrkion

$$
\begin{aligned}
w\left(y_{1}, y_{2}\right)(x) & =\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{cc}
e^{m_{1} x} & e^{m_{2} x} \\
m_{1} e^{m_{1} x} & m_{2} e^{m_{2} x}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =e^{m_{1} x}\left(m_{2} e^{m_{2} x}\right)-m_{1} e^{m_{1} x} \cdot e^{m_{2} x} \\
& =m_{2} e^{\left(m_{1}+m_{2}\right) x}-m_{1} e^{\left(m_{1}+m_{2}\right) x} \\
W\left(y_{1}, y_{2}\right)(x) & =\left(m_{2}-m_{1}\right) e^{\left(m_{1}+m_{2}\right) x}
\end{aligned}
$$

Note $\omega \neq 0$ since $m_{2} \neq m_{1}$.
Hence $y_{1}=e^{m_{1} x}, y_{2}=e^{m_{2} x}$ give a findomental solution set.

Example
Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=10
$$

Gen. Soln. Characteristec eqn.

$$
\begin{aligned}
& m^{2}+m-12=0 \\
& (m+4)(m-3)=0 \Rightarrow m_{1}=-4, m_{2}=3
\end{aligned}
$$

$y_{1}=e^{-4 x}, y_{2}=e^{3 x}$ the genead solution

$$
\begin{aligned}
& y=c_{1} e^{-4 x}+c_{2} e^{3 x} \\
& y^{\prime}=-4 c_{1} e^{-4 x}+3 c_{2} e^{3 x}
\end{aligned}
$$

$$
\begin{aligned}
& y(0)=c_{1} e^{0}+c_{2} e^{0}=1 \Rightarrow c_{1}+c_{2}=1 \\
&\left.y^{\prime}(0)=-4 c_{1} e^{0}+3 c_{2} e^{0}=10 \Rightarrow \begin{array}{l}
-4 c_{1}+3 c_{2}
\end{array}\right)=10 \\
& \frac{4 c_{1}+4 c_{2}}{}=4
\end{aligned} \quad 7 c_{2}=14 \quad c_{2}=2
$$

The solution th the IVP is

$$
y=-e^{-4 x}+2 e^{3 x}
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
y=c_{1} e^{m x}+c_{2} x e^{m x} \quad \text { where } \quad m=\frac{-b}{2 a}
\end{gathered}
$$

Use reduction of order to show that if $y_{1}=e^{\frac{-b x}{2 a}}$, then $y_{2}=x e^{\frac{-b x}{2 a}}$.
Standard form:

$$
y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 \quad y_{1}=e^{\frac{-b}{2 a} x} \text { known. }
$$

$y_{2}=u y_{1}$ where $u=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}\right)^{2}} d x$

$$
\begin{aligned}
& P(x)=\frac{b}{a}, \quad-\int p(x) 2 x=-\int \frac{b}{a} d x=\frac{-b}{a} x \\
& u=\int \frac{e^{-\frac{b}{a} x}}{\left(e^{-\frac{b}{2 a} x}\right)^{2}} d x=\int \frac{e^{\frac{-b}{a} x}}{e^{-2\left(\frac{b}{2 a} x\right)}} d x \\
&=\int \frac{e^{\frac{-b}{a} x}}{e^{\frac{-b}{a} x}} d x=\int d x=x \\
& y_{2}=u y_{1}=x e^{\frac{-b}{2 a} x}
\end{aligned}
$$

Example

Solve the ODE

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Characteristic can

$$
\begin{aligned}
& 4 m^{2}-4 m+1=0 \\
& (2 m-1)^{2}=0 \Rightarrow m=\frac{1}{2}
\end{aligned}
$$

repeated

$$
y_{1}=e^{\frac{1}{2} x}, y_{2}=x e^{\frac{1}{2} x}
$$ root

Genend solution $y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \text { and } \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a} \\
\alpha_{1} \beta \text { are read numbers well always take } \beta>0 .
\end{gathered}
$$

The solutions can be written as

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

Deriving the solutions Case III
Recall Euler's Formula:

$$
e^{i \theta}=\cos \theta+i \sin \theta \quad \theta-\text { real valued }
$$

$$
\begin{aligned}
Y_{1}=e^{\alpha x} e^{i \beta x} & =e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x) \\
Y_{2}=e^{\alpha x} e^{-i \beta x} & =e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Using the principle of superposition, weill toke

$$
\begin{aligned}
& y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right) \text { and } y_{2}=\frac{1}{2 i}\left(Y_{1}-Y_{2}\right) \\
& y_{1}=\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)+0\right)=e^{\alpha x} \cos (\beta x) \\
& y_{2}=\frac{1}{2 i}\left(0+2 i e^{\alpha x} \sin (\beta x)\right)=e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

Or fundomented solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x), y_{2}=e^{\alpha x} \sin (\beta x)
$$

Example
Solve the ODE

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0
$$

Cher. eq $\quad m^{2}+4 m+6=0$

$$
x_{1}=e^{-2 t} \cos (\sqrt{2} t), x_{2}=e^{-2 t} \sin (\sqrt{2} t)
$$

$$
\begin{gathered}
m=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 1 \cdot 6}}{2 \cdot 1}=\frac{-4 \pm 2 \sqrt{2} i}{2} \\
=-2 \pm \sqrt{2} i \\
\alpha=-2, \beta=\sqrt{2}
\end{gathered}
$$

Gen, sols

$$
x=c_{1} e^{-2 t} \cdot \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{\text {th }}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$.
- If a root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example
Solve the ODE

$$
y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x}, y^{\prime \prime \prime}=m^{3} e^{m x}
$$

$$
\begin{aligned}
y^{\prime \prime \prime}-4 y^{\prime}=0 \quad \text { substitute } \quad m^{3} e^{m x}-4 m e^{m x} & =0 \\
e^{m x}\left(m^{3}-4 m\right) & =0
\end{aligned}
$$

The characteristic ego is

$$
m^{3}-4 m=0
$$

factor

$$
\begin{array}{ll}
m\left(m^{2}-4\right)=0 \\
m(m-2)(m+2)=0 \Rightarrow & m_{1}=0 \\
m_{2}=2 \\
m_{3}=-2
\end{array}
$$

3 ssin.

$$
y_{1}=e^{0 x}=1, y_{2}=e^{2 x}, y_{3}=e^{-2 x}
$$

Gen. soln

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-2 x}
$$

[^0]: ${ }^{1}$ We'll generalize to higher order later in this section.

