February 20 Math 2306 sec. 60 Spring 2019

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

We found that $y=e^{m x}$ is a solution provided m is a solution to the equation

$$
a m^{2}+b m+c=0
$$

called the characteristic (or auxiliary) equation.

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0
$$

The values of m are

$$
m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=10
$$

$2^{\text {nd }}$ order, linear, homogiveous, constant coefficient Charactaistic equation:

$$
\begin{gathered}
m^{2}+m-12=0 \\
(m+4)(m-3)=0 \\
m_{1}=-4, m_{2}=3
\end{gathered}
$$

Solutions $y_{1}=e^{-4 x}, y_{2}=e^{3 x}$
The gevend solution to the ODE is $y=c_{1} e^{-4 x}+c_{2} e^{3 x}$

App, $y(0)=1, y^{\prime}(0)=10 \quad y^{\prime}=-4 c_{1} e^{-4 x}+3 c_{2} e^{3 x}$

$$
\begin{aligned}
& y(0)=c_{1} e^{0}+c_{2} e^{0}=1 \Rightarrow c_{1}+c_{2}=1 \\
& y^{\prime}(0)=-4 c_{1} e^{0}+3 c_{2} e^{0}=10 \Rightarrow-4 c_{1}+3 c_{2}=10 \\
& 4 c_{1}+4 c_{2}=4 \Rightarrow \quad 7 c_{2}=14 \quad c_{2}=2 \\
&-4 c_{1}+3 c_{2}=10 \Rightarrow c_{1}=1-c_{2}=1-2=-1
\end{aligned}
$$

The solution to the IVP is

$$
y=-e^{-4 x}+2 e^{3 x}
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
y=c_{1} e^{m x}+c_{2} x e^{m x} \quad \text { where } \quad m=\frac{-b}{2 a}
\end{gathered}
$$

Use reduction of order to show that if $y_{1}=e^{\frac{-b x}{2 a}}$, then $y_{2}=x e^{\frac{-b x}{2 a}}$. $y_{1}=e^{\frac{-b}{2 a} x}$ is known. $y_{2}=u y_{1}$ where $u=\int \frac{e^{-\int \rho_{1} \mid d x}}{\left(y_{1}\right)^{2}} d x$
Standard form

$$
\begin{aligned}
& y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0 \quad P(x)=\frac{b}{a} \\
& e^{-\int P(x) d x}=e^{-\int \frac{b}{a} d x}=e^{-\frac{b}{a} x}
\end{aligned}
$$

$$
\begin{gathered}
\left(y_{1}\right)^{2}=\left(e^{\frac{-b}{2 a} x}\right)^{2}=e^{2\left(\frac{-b}{2 a} x\right)}=e^{\frac{-b}{a} x} \\
u=\int \frac{e^{\left.-\int p_{(x)}\right) x}}{\left(y_{1}\right)^{2}} d x=\int \frac{e^{\frac{-b}{a} x}}{e^{\frac{-b}{a} x}} d x=\int d x=x \\
y_{2}=u y_{1}=x e^{\frac{-b}{2 a} x}
\end{gathered}
$$

You can show that $y_{1}=e^{\frac{-b}{2 a} x}$ and $y_{2}=x e^{\frac{-b}{2 a} x}$ are linearly independent

Example
 nomogevears
Solve the ODE

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Characteristic eqn: $4 m^{2}-4 m+1=0$

$$
\begin{aligned}
& (2 m-1)^{2}=0 \Rightarrow m=\frac{1}{2} \text { repeated } \\
& y_{1}=e^{\frac{1}{2} x} \text { and } y_{2}=x e^{\frac{1}{2} x}
\end{aligned}
$$

The Generd solution is

$$
y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}
$$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

The solutions can be written as

$$
\begin{gathered}
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \\
\text { and } \\
e_{2}^{\alpha x+i \beta x}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} . \\
e^{\alpha x-i p x}
\end{gathered}
$$

Deriving the solutions Case III
Recall Euler's Formula:

$$
\begin{array}{rlr}
Y_{1}=e^{\alpha x} e^{i \beta x}=\cos \theta+i \sin \theta & =e^{\alpha x}(\cos (\beta x)+i \sin (\beta x)) \quad \cos (-\beta x)=\cos (\beta x) \\
& =e^{\alpha x} \cos (\beta x)+i e^{\alpha x} \sin (\beta x)=-\sin (\beta x) \\
Y_{2}=e^{\alpha x} e^{-i \beta x} & =e^{\alpha x}(\cos (\beta x)-i \sin (\beta x)) \\
& =e^{\alpha x} \cos (\beta x)-i e^{\alpha x} \sin (\beta x)
\end{array}
$$

By superposition we con take $y_{1}, y_{2}=k_{1} Y_{1}+k_{2} Y_{2}$
Let

$$
y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right)=\frac{1}{2}\left(2 e^{\alpha x} \cos (\beta x)+i \cdot 0\right)=e^{d x} \cos (\beta x)
$$

and

$$
\begin{aligned}
y_{2} & =\frac{1}{2 i}\left(Y_{1}-Y_{2}\right)=\frac{1}{2 i}\left(0+i 2 e^{\alpha x} \sin (\beta x)\right) \\
& =e^{\alpha x} \sin (\beta x)
\end{aligned}
$$

orr fundamental solution set is

$$
y_{1}=e^{\alpha x} \cos (\beta x), y_{2}=e^{\alpha x} \sin (\beta x)
$$

