Section 2.2: Inverse of a Matrix

Consider the scalar equation \(ax = b \). Provided \(a \neq 0 \), we can solve this explicitely

\[x = a^{-1} b \]

where \(a^{-1} \) is the unique number such that \(aa^{-1} = a^{-1} a = 1 \).

If \(A \) is an \(n \times n \) matrix, we seek an analog \(A^{-1} \) that satisfies the condition

\[A^{-1} A = AA^{-1} = I_n. \]

If such matrix \(A^{-1} \) exists, we’ll say that \(A \) is nonsingular (a.k.a. invertible). Otherwise, we’ll say that \(A \) is singular.
Theorem (2 \times 2 case)

Let \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \). If \(ad - bc \neq 0 \), then \(A \) is invertible and

\[
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
\]

If \(ad - bc = 0 \), then \(A \) is singular.

The quantity \(ad - bc \) is called the \textbf{determinant} of \(A \) and may be denoted in several ways

\[
\text{det}(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix}.
\]
Find the inverse if possible

(a) \[A = \begin{bmatrix} 3 & 2 \\ -1 & 5 \end{bmatrix} \]

(b) \[A = \begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix} \]
Theorem

If A is an invertible $n \times n$ matrix, then for each b in \mathbb{R}^n, the equation $Ax = b$ has unique solution $x = A^{-1}b$.
Example

Solve the system

\[\begin{align*}
3x_1 + 2x_2 &= -1 \\
-x_1 + 5x_2 &= 4
\end{align*}\]
Theorem

(i) If A is invertible, then A^{-1} is also invertible and

\[(A^{-1})^{-1} = A. \]

(ii) If A and B are invertible $n \times n$ matrices, then the product AB is also invertible\(^1\) with

\[(AB)^{-1} = B^{-1}A^{-1}. \]

(iii) If A is invertible, then so is A^T. Moreover

\[(A^T)^{-1} = (A^{-1})^T. \]

\(^1\)This can generalize to the product of k invertible matrices.
Elementary Matrices

Definition: An elementary matrix is a square matrix obtained from the identity by performing one elementary row operation.

Examples:

\[
E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
\]
Action of Elementary Matrices

Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$, and compute the following products E_1A, E_2A, and E_3A.

$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$
\[
A = \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i \\
\end{bmatrix}
\]

\[
E_3 = \begin{bmatrix}
 0 & 1 & 0 \\
 1 & 0 & 0 \\
 0 & 0 & 1 \\
\end{bmatrix}
\]
Remarks

- Elementary row operations can be equated with matrix multiplication (multiply on the left by an elementary matrix),

- Each elementary matrix is invertible where the inverse *undoes* the row operation,

- Reduction to rref is a sequence of row operations, so it is a sequence of matrix multiplications

\[
\text{rref}(A) = E_k \cdots E_2 E_1 A.
\]
Theorem

An $n \times n$ matrix A is invertible if and only if it is row equivalent to the identity matrix I_n. Moreover, if

$$\text{rref}(A) = E_k \cdots E_2 E_1 A = I_n,$$

then

$$A = (E_k \cdots E_2 E_1)^{-1} I_n.$$

That is,

$$A^{-1} = \left[(E_k \cdots E_2 E_1)^{-1}\right]^{-1} = E_k \cdots E_2 E_1.$$

The sequence of operations that reduces A to I_n, transforms I_n into A^{-1}.

This last observation—operations that take A to I_n also take I_n to A^{-1}—gives us a method for computing an inverse!
Algorithm for finding A^{-1}

To find the inverse of a given matrix A:

- Form the $n \times 2n$ augmented matrix $[A \ I]$.
- Perform whatever row operations are needed to get the first n columns (the A part) to rref.
- If rref(A) is I, then $[A \ I]$ is row equivalent to $[I \ A^{-1}]$, and the inverse A^{-1} will be the last n columns of the reduced matrix.
- If rref(A) is NOT I, then A is not invertible.

Remarks: We don’t need to know ahead of time if A is invertible to use this algorithm.
If A is singular, we can stop as soon as it’s clear that rref(A) $\neq I$.
Examples: Find the Inverse if Possible

(a) \[
\begin{bmatrix}
1 & 2 & -1 \\
-4 & -7 & 3 \\
-2 & -6 & 4 \\
\end{bmatrix}
\]
Examples: Find the Inverse if Possible

(b) \[
\begin{bmatrix}
1 & 2 & 3 \\
0 & 1 & 4 \\
5 & 6 & 0 \\
\end{bmatrix}
\]
Solve the linear system if possible

\[
\begin{align*}
 x_1 + 2x_2 + 3x_3 &= 3 \\
 x_2 + 4x_3 &= 3 \\
 5x_1 + 6x_2 &= 4
\end{align*}
\]
Section 2.3: Characterization of Invertible Matrices

Given an \(n \times n \) matrix \(A \), we can think of

- A matrix equation \(Ax = b; \)
- A linear system that has \(A \) as its coefficient matrix;
- A linear transformation \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) defined by \(T(x) = Ax; \)
- Not to mention things like its **pivots**, its **rref**, the linear dependence/independence of its columns, blah blah blah...

Question: How is this stuff related, and how does being singular or invertible tie in?
Theorem: Suppose A is $n \times n$. The following are equivalent.\(^2\)

(a) A is invertible.
(b) A is row equivalent to I_n.
(c) A has n pivot positions.
(d) $Ax = 0$ has only the trivial solution.
(e) The columns of A are linearly independent.
(f) The transformation $x \mapsto Ax$ is one to one.
(g) $Ax = b$ is consistent for every b in \mathbb{R}^n.
(h) The columns of A span \mathbb{R}^n.
(i) The transformation $x \mapsto Ax$ is onto.
(j) There exists an $n \times n$ matrix C such that $CA = I$.
(k) There exists an $n \times n$ matrix D such that $AD = I$.
(l) A^T is invertible.

\(^2\)Meaning all are true or none are true.
Theorem: (An inverse matrix is unique.)

Let A and B be $n \times n$ matrices. If $AB = I$, then A and B are both invertible with $A^{-1} = B$ and $B^{-1} = A$.
Invertible Linear Transformations

Definition: A linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is said to be invertible if there exists a function $S : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that both

$$S(T(x)) = x \text{ and } T(S(x)) = x$$

for every x in \mathbb{R}^n.

If such a function exists, we typically denote it by

$$S = T^{-1}.$$
Theorem (Invertibility of a linear transformation and its matrix)

Let \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a linear transformation and \(A \) its standard matrix. Then \(T \) is invertible if and only if \(A \) is invertible. Moreover, if \(T \) is invertible, then

\[
T^{-1}(x) = A^{-1}x
\]

for every \(x \) in \(\mathbb{R}^n \).
Example

Use the standard matrix to determine if the linear transformation is invertible. If it is invertible, characterize the inverse transformation.

\[T : \mathbb{R}^2 \rightarrow \mathbb{R}^2, \text{ given by } T(x_1, x_2) = (3x_1 - x_2, 4x_2). \]
Example

Suppose $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is a one to one linear transformation. Can we determine whether T is onto? Why (or why not)?