February 21 MATH 1112 sec. 52 Spring 2020

Trigonometric Functions of Any Angle

Reference Angles: Suppose we want to find the trig values for the angle θ shown. Note that the acute angle (pink) has terminal side through (x, y), and by symmetry the terminal side of θ passes through the point $(-x, y)$ (same y and opposite sign x).

Figure: What is the connection between the trig values for θ and those for the acute angle in pink?

Reference Angles

Definition: Let θ be an angle in standard position that is not a quadrantal angle. The reference angle θ^{\prime} associated with θ is the angle of measure $0^{\circ}<\theta^{\prime}<90^{\circ}$ between the terminal side of θ and the nearest part of the x-axis.

Example (a)

Determine the reference angle.

Example (b)

Determine the reference angle.

Theorem on Reference Angles

Theorem: If θ^{\prime} is the reference angle for the angle θ, then

$$
\sin \theta^{\prime}=|\sin \theta|, \quad \cos \theta^{\prime}=|\cos \theta| \quad \& \quad \tan \theta^{\prime}=|\tan \theta| .
$$

Remark 1: The analogous relationships hold for the cosecant, secant, and cotangent.

Remark 2: This means that the trigonometric values for θ can differ at most by a sign (+ or -) from the values for θ^{\prime}.

Recall The Trigonometric Values

θ°	0°	30°	45°	60°	90°
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

Remember the sign mnemonic:
All Students Take Calculus

Example: Using Reference Angles
Find the exact value of
(a) $\sin \left(135^{\circ}\right)$

$$
\sin \left(135^{\circ}\right)= \pm \sin \left(45^{\circ}\right)
$$

135° is a quad II angle so sine is positive.

$$
\begin{aligned}
\theta^{\prime} & =180^{\circ}-135^{\circ} \\
& =45^{\circ}
\end{aligned}
$$

$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$

$$
\sin \left(135^{\circ}\right)=\frac{1}{\sqrt{2}}
$$

Example: Using Reference Angles

Find the exact value of
(b) $\cos \left(210^{\circ}\right)$

$$
\cos \left(210^{\circ}\right)= \pm \cos \left(30^{\circ}\right)
$$

210° is a quad III angle
cosine is negative

$$
\operatorname{Cos}\left(210^{\circ}\right)=\frac{-\sqrt{3}}{2}
$$

Draw 210°

$$
\cos 30^{\circ}=\frac{\sqrt{3}}{2}
$$

More New Trigonometric Identities

Quotient Identities: For any given θ for which both sides are defined

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \& \quad \cot \theta=\frac{\cos \theta}{\sin \theta} .
$$

If (x, y) is a point on the terming side of θ in standard position, and $r=\sqrt{x^{2}+b^{2}}>0$

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} ; \cos \theta=\frac{x}{r} \text { and } \tan \theta=\frac{b}{x} \\
& \frac{\sin \theta}{\cos \theta}=\frac{y / r}{x / r}=\frac{y}{r} \cdot \frac{r}{x}=\frac{y}{x}=\tan \theta
\end{aligned}
$$

Example
Use the given information to determine the remaining trigonometric values of θ.

$$
\begin{aligned}
& \sin \theta=\frac{1}{4} \text { and } \cos \theta=-\frac{\sqrt{15}}{4} \\
& \csc \theta=\frac{1}{\sin \theta}=4 \quad \sec \theta=\frac{1}{\cos \theta}=\frac{-4}{\sqrt{15}} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{1}{4}}{-\frac{\sqrt{15}}{4}}=\frac{1}{4}\left(\frac{-4}{\sqrt{15}}\right)=\frac{-1}{\sqrt{15}} \\
& \cot \theta=\frac{1}{\tan \theta}=-\sqrt{15}
\end{aligned}
$$

