February 21 MATH 1112 sec. 52 Spring 2020

Trigonometric Functions of Any Angle

Reference Angles: Suppose we want to find the trig values for the angle θ shown. Note that the acute angle (pink) has terminal side through (x, y), and by symmetry the terminal side of θ passes through the point (-x, y) (same y and opposite sign x).

Figure: What is the connection between the trig values for θ and those for the acute angle in pink?

February 18, 2020

1/13

Reference Angles

Definition: Let θ be an angle in standard position that is not a quadrantal angle. The **reference angle** θ' associated with θ is the angle of measure $0^{\circ} < \theta' < 90^{\circ}$ between the terminal side of θ and the *nearest* part of the *x*-axis.

■ ● ● ■ 一 ○ Q (?)
 February 18, 2020 2/13

Example (a)

Determine the reference angle.

イロト イヨト イヨト イヨト

Example (b) Determine the reference angle.

イロト イヨト イヨト イヨト

Theorem on Reference Angles

Theorem: If θ' is the reference angle for the angle θ , then

$$\sin \theta' = |\sin \theta|, \quad \cos \theta' = |\cos \theta| \quad \& \quad \tan \theta' = |\tan \theta|.$$

Remark 1: The analogous relationships hold for the cosecant, secant, and cotangent.

Remark 2: This means that the trigonometric values for θ can differ at most by a sign (+ or -) from the values for θ' .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

February 18, 2020

6/13

Recall The Trigonometric Values

θ°	0 °	30 °	45°	60°	90°
θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin heta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

Remember the sign mnemonic:

All Students Take Calculus

イロト イポト イヨト イヨト

э

7/13

February 18, 2020

Example: Using Reference Angles

sin(135°) (a) Sin(135) = ± Sin(45°) 135° is a good II angle so sine is positive. Sin (135°) = 1

٨

Find the exact value of

February 18, 2020 8/13

Example: Using Reference Angles

Find the exact value of

cos(210°) (b) Cos (2100) = + Cos (30°) 210° is a good III ongle Cosine is negative $C^{02}(510_{e}) = -\frac{1}{2}$

February 18, 2020

9/13

More New Trigonometric Identities

Quotient Identities: For any given θ for which both sides are defined

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \quad \& \quad \cot \theta = \frac{\cos \theta}{\sin \theta}.$$

If (x, y) is a point on the terminal side
of Θ in standard position, and $r = \sqrt{x^2 + y^2} > 0$
 $S_{in} \Theta = \frac{y}{r}$ is $\cos \theta = \frac{x}{r}$ and $\tan \theta = \frac{y}{x}$
 $\frac{S_{in} \Theta}{\cos \theta} = \frac{y|r}{x/r} = \frac{y}{r} \cdot \frac{r}{x} = \frac{\varphi}{x} = + \pi \Theta$

э

イロト イポト イヨト イヨト

Example

Use the given information to determine the remaining trigonometric values of θ .

$$\sin \theta = \frac{1}{4} \quad \text{and} \quad \cos \theta = -\frac{\sqrt{15}}{4}$$

$$C_{SC} \theta = \frac{1}{\sin \theta} = 4 \qquad S_{CC} \theta = \frac{1}{\cos \theta} = \frac{-4}{\sqrt{15}}$$

$$+\alpha \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{1}{4}}{-\frac{\sqrt{15}}{4}} = \frac{1}{4} \left(\frac{-4}{\sqrt{15}}\right) = \frac{-1}{\sqrt{15}}$$

$$C_{O} + \theta = \frac{1}{4\alpha \theta} = -\sqrt{15}$$

<ロ> <四> <四> <四> <四> <四</p>