February 21 Math 1190 sec. 63 Spring 2017

Chapter 2: Derivatives

Let's recall the definitions and derivative rules we have so far:

Let's assume that $y=f(x)$ is a function with c in it's domain. The derivative of f at c is

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}
$$

provided the limit exists.

Notes on Notation

If $y=f(x)$, we have the Leibniz notation for the derivative function

$$
f^{\prime}(x)=\frac{d y}{d x}
$$

We can use this notation for the derivative at a point in the following well accepted way

$$
f^{\prime}(c)=\left.\frac{d y}{d x}\right|_{c}
$$

For example, if $y=x^{2}$, then

$$
\frac{d y}{d x}=2 x, \quad \text { and }\left.\quad \frac{d y}{d x}\right|_{3}=6
$$

The Derivative Function

For $y=f(x)$, the derivative

$$
\frac{d y}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Another, sometimes convenient formulation of this is

$$
\frac{d y}{d x}=f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

using a dummy variable (a place keeper) z.

Derivative Rules

Constant: $\frac{d}{d x} c=0$

Identity: $\frac{d}{d x} x=1$

Power: $\frac{d}{d x} x^{n}=n x^{n-1}$ for integers n

Exponential: $\frac{d}{d x} e^{x}=e^{x}$

Derivative Rules

Constant Factor: $\quad \frac{d}{d x} k f(x)=k f^{\prime}(x)$

Sum or Difference: $\frac{d}{d x}(f(x) \pm g(x))=f^{\prime}(x) \pm g^{\prime}(x)$

Product: $\quad \frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$

Quotient: $\quad \frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}}$

Six Trig Function Derivatives

$$
\begin{aligned}
\frac{d}{d x} \sin x=\cos x, & \frac{d}{d x} \cos x=-\sin x \\
\frac{d}{d x} \tan x=\sec ^{2} x, & \frac{d}{d x} \cot x=-\csc ^{2} x \\
\frac{d}{d x} \sec x=\sec x \tan x, & \frac{d}{d x} \csc x=-\csc x \cot x
\end{aligned}
$$

Question

Suppose $y=2 x e^{x}$. Evaluate $\left.\frac{d y}{d x}\right|_{0}$
(a) $\left.\frac{d y}{d x}\right|_{0}=0$
$\frac{d y}{d x}=2 e^{x}+2 x e^{x}$
(b) $\left.\frac{d y}{d x}\right|_{0}=2$

$$
\left.\frac{d y}{d x}\right|_{0}=2 e^{0}+2.0 e^{0}=2
$$

(c) $\left.\frac{d y}{d x}\right|_{0}=2 e$
(d) $\left.\frac{d y}{d x}\right|_{0}=e$

Question

True) or False: If f is differentiable at c, then the slope, $m_{t a n}$, of the line tangent to the graph of f at the point $(c, f(c))$ is

$$
m_{t a n}=f^{\prime}(c)
$$

Derivative, slope of the tangent line, rate of change
these are the same concept

Question

Using the quotient rule, $\frac{d}{d x} \frac{\cos x}{x^{3}+2}=$
(a) $\frac{-\sin x}{3 x^{2}}$
(b) $\frac{-\left(x^{3}+2\right) \sin x-3 x^{2} \cos x}{x^{6}+4}$
(c) $\frac{\left(x^{3}+2\right) \sin x+3 x^{2} \cos x}{\left(x^{3}+2\right)^{2}}$
(d) $\frac{-\left(x^{3}+2\right) \sin x-3 x^{2} \cos x}{\left(x^{3}+2\right)^{2}}$

Section 3.1: The Chain Rule
Suppose we wish to find the derivative of $f(x)=\left(x^{2}+2\right)^{2}$.
we con expand f first. $f(x)=x^{4}+4 x^{2}+4$

$$
f^{\prime}(x)=4 x^{3}+8 x
$$

Compositions
Now suppose we want to differentiate $G(x)=\left(x^{2}+2\right)^{10}$. How about $F(x)=\sqrt{x^{2}+2}$?

We can expand G as in the previous example. Bet that's allot of work.

F cant be "expanded." At this point, we could on's find $F^{\prime}(x)$ by using the definition.

Example of Compositions
Find functions $f(u)$ and $g(x)$ such that

$$
F(x)=\sqrt{x^{2}+2}=(f \circ g)(x)
$$

The composition follows regular order of operations.

$$
g(x)=x^{2}+2, \quad f(u)=\sqrt{u}
$$

Check: $(f \circ g)(x)=f(g(x))=f\left(x^{2}+2\right)=\sqrt{x^{2}+2}$

Example of Compositions
Find functions $f(u)$ and $g(x)$ such that

$$
\begin{aligned}
F(x)=\cos \left(\frac{\pi x}{2}\right) & =(f \circ g)(x) . \\
g(x)=\frac{\pi}{2} x, \quad f(n) & =\cos (n)
\end{aligned}
$$

Check: $(f \circ g)(x)=f(g(x))=f\left(\frac{\pi}{2} x\right)=\operatorname{Cos}\left(\frac{\pi}{2} x\right)$

Theorem: Chain Rule

Suppose g is differentiable at x and f is differentiable at $g(x)$. Then the composite function

$$
F=f \circ g
$$

is differentiable at x and

$$
\frac{d}{d x} F(x)=\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

In Liebniz notation: if $y=f(u)$ and $u=g(x)$, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Example
Determine any inside and outside functions and find the derivative.
(a) $F(x)=\sin ^{2} x=(\sin x)^{2}$

$$
\begin{aligned}
& u=g(x)=\sin x, \quad g^{\prime}(x)=\cos x \\
& f(u)=u^{2}, \quad f^{\prime}(u)=2 u \\
& (f \circ g)(x) \\
& F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) \\
& =f(g(x)) \\
& =2 \sin x \cdot \cos x=2 \sin x \cos x \\
& =f(\sin x) \\
& =(\sin x)^{2}
\end{aligned}
$$

(b)

$$
\left.\left.\begin{array}{rl}
F(x)=e^{x^{4}-5 x^{2}+1}=\exp \left(x^{4}-5 x^{2}+1\right) \\
u=g(x) & =x^{4}-5 x^{2}+1, \quad g^{\prime}(x)
\end{array}\right)=4 x^{3}-10 x\right] \quad f^{\prime}(u)=e^{u} .
$$

Question

If $G(\theta)=\cos \left(\frac{\pi \theta}{2}-\frac{\pi}{4}\right)=f(g(\theta))$ where

$$
\begin{array}{r}
f(u)=\cos u, \text { and } g(\theta)=\frac{\pi \theta}{2}-\frac{\pi}{4}, \text { then } \\
g^{\prime}(\theta)=\frac{\pi}{2}
\end{array}
$$

(a) $G^{\prime}(\theta)=-\frac{\pi}{2} \sin \theta$

$$
f^{\prime}(u)=-\sin u
$$

(b) $G^{\prime}(\theta)=-\frac{\pi}{2} \sin \left(\frac{\pi \theta}{2}-\frac{\pi}{4}\right)$
(c) $\quad G^{\prime}(\theta)=-\sin \left(\frac{\pi \theta}{2}\right)+\sin \left(\frac{\pi}{4}\right)$

The power rule with the chain rule
If $u=g(x)$ is a differentiable function and n is any integer, then

$$
\frac{d}{d x} u^{n}=n u^{n-1} \frac{d u}{d x}
$$

Evaluate: $\frac{d}{d x} e^{7 x}=\frac{d}{d x}\left(e^{x}\right)^{7}$

$$
=7\left(e^{x}\right)^{6} \cdot e^{x}
$$

$$
\begin{array}{ll}
u=e^{x} & f(u)=u^{7} \\
\frac{d u}{d x}=e^{x} & f^{\prime}(u)=7 u^{6}
\end{array}
$$

$$
\begin{aligned}
& =7 e^{6 x} \cdot e^{x} \\
& =7 e^{7 x}
\end{aligned}
$$

Question

Evaluate $\frac{d}{d x} \sin ^{4}(x)=\frac{d}{d x}(\sin x)^{4}$
(a) $4 \cos ^{3}(x)$
(b) $4 \sin ^{3}(x) \cos ^{3}(x)$
(c) $4 \sin ^{3}(x) \cos (x)$
(d) $-4 \sin ^{3}(x) \cos (x)$

Example
Find the equation of the line tangent to the graph of $y=\cos ^{2} x$ at the point $\left(\frac{\pi}{4}, \frac{1}{2}\right)$.

$$
\begin{aligned}
& y=(\cos x)^{2} \\
& \frac{d y}{d x}=2(\cos x) \cdot(-\sin x) \quad m_{t m}=-2 \cos \\
&=-2 \cos x \sin x \\
&=-2\left(\frac{1}{5}\right. \\
& y-\frac{1}{2}=-1(x-\pi / 4) \Rightarrow y=-x+\frac{\pi}{4}+\frac{1}{2}
\end{aligned}
$$

Figure: $y=\cos ^{2} x$ and the tangent line at $\left(\frac{\pi}{4}, \frac{1}{2}\right)$.

We may be able to choose between differentiation methods.

Evaluate $\frac{d}{d x} \frac{\sin x}{x^{3}+2}$ using
(a) The quotient rule:

$$
\begin{aligned}
\frac{d}{d x} \frac{\sin x}{x^{3}+2} & =\frac{\cos x\left(x^{3}+2\right)-\sin x\left(3 x^{2}\right)}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\left(x^{3}+2\right) \cos x-3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}} \\
& =\frac{\left(x^{3}+2\right) \cos x}{\left(x^{3}+2\right)^{2}}-\frac{3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}}=\frac{\cos x}{x^{3}+2}-\frac{3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}}
\end{aligned}
$$

(b) writing $\frac{\sin x}{x^{3}+2}=(\sin x)\left(x^{3}+2\right)^{-1}$ and using the chain rule.

$$
\begin{aligned}
\frac{d}{d x} \frac{\sin x}{x^{3}+2} & =\cos x\left(x^{3}+2\right)^{-1}+\sin x\left(-1\left(x^{3}+2\right)^{-2} \cdot\left(3 x^{2}\right)\right) \\
& =\frac{\cos x}{x^{3}+2}-\sin x\left(x^{3}+2\right)^{-2}\left(3 x^{2}\right) \\
& =\frac{\cos x}{x^{3}+2}-\frac{3 x^{2} \sin x}{\left(x^{3}+2\right)^{2}}
\end{aligned}
$$

Question

Suppose that $g(x)$ is differentiable. The derivative of $e^{g(x)}$ is (Hint: The outside function is e^{u}, and the inside function is $g(x)$.)
(a) $e^{g(x)} g^{\prime}(x)$
(b) $e^{g(x)}$
(c) $e^{g^{\prime}(x)}$

Question
 $$
\frac{d}{d x} e^{g(x)}=e^{g(x)} g^{\prime}(x)
$$

Find the equation of the line tangent to the graph of $f(x)=e^{\sin x}$ at the point ($0, f(0)$).
(a) $y=x+1$

$$
f(0)=1
$$

(b) $y=1$
$f^{\prime}(0)=1$
(c) $y=x-1$
(d) $y=e x+1$

Multiple Compositions

The chain rule can be iterated to account for multiple compositions. For example, suppose f, g, h are appropriately differentiable, then

$$
\frac{d}{d x}(f \circ g \circ h)(x)=\frac{d}{d x} f\left(g(h(x))=f^{\prime}\left(g(h(x)) g^{\prime}(h(x)) h^{\prime}(x)\right.\right.
$$

Note that the outermost function is f, and its inner function is a composition $g(h(x))$.

So the derivative of the outer function evaluated at the inner is $f^{\prime}(g(h(x))$ which is multiplied by the derivative of the inner function-itself based on the chain rule- $g^{\prime}(h(x)) h^{\prime}(x)$.

Example
Evaluate the derivative $\frac{d}{d t} \tan ^{2}\left(\frac{1}{3} t^{3}\right)=\frac{d}{d t}\left(\tan \left(\frac{1}{3} t^{3}\right)\right)^{2}$

$$
\begin{array}{ll}
v=h(t)=\frac{1}{3} t^{3}, & h^{\prime}(t)=t^{2} \\
u=g(v)=\tan v, & g^{\prime}(v)=\sec ^{2} v \\
f(u)=u^{2} & f^{\prime}(u)=2 u \\
\begin{aligned}
\frac{d}{d t} \tan ^{2}\left(\frac{1}{3} t^{3}\right)=2 \tan v & \sec ^{2} v \cdot t^{2}=2 \tan \left(\frac{1}{3} t^{3}\right) \sec ^{2}\left(\frac{1}{3} t^{3}\right) t^{2} \\
& =2 t^{2} \tan \left(\frac{1}{3} t^{3}\right) \sec ^{2}\left(\frac{1}{3} t^{3}\right)
\end{aligned}
\end{array}
$$

Exponential of Base a
Let $a>0$ with $a \neq 1$. By properties of logs and exponentials

$$
a^{x}=e^{(\ln a) x} \cdot=e^{\ln a^{x}}
$$

$(\ln a) x$ is a constant times $x . \quad \frac{d}{d x}(\ln a) x=\ln a$

$$
\frac{d}{d x} a^{x}=\frac{d}{d x} e^{(\ln a) x}=e^{(\ln a) x} \cdot \ln a=a^{x} \ln a
$$

Theorem: (Derivative of $y=a^{x}$) Let $a>0$ and $a \neq 1$. Then

$$
\frac{d}{d x} a^{x}=a^{x} \ln a
$$

Exponential of Base a

Theorem: (Derivative of $y=a^{x}$) Let $a>0$ and $a \neq 1$. Then

$$
\frac{d}{d x} a^{x}=a^{x} \ln a
$$

Recall from before that if $f(x)=a^{x}$ then

$$
\frac{d}{d x} a^{x}=f^{\prime}(0) a^{x} \quad \text { where } \quad f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
$$

We now see that the number $f^{\prime}(0)=\ln (a)$.

Example
Evaluate
(a) $\frac{d}{d x} 4^{x}=4^{x} \ln 4 \quad \frac{d}{d x} a^{x}=a^{x} \ln a$, hen $a=4$
(b) $\frac{d}{d x} 2^{\cos x}$

$$
\begin{aligned}
& u=g(x)=\cos x, g^{\prime}(x)=-\sin x \\
& f(n)=2^{u}, f^{\prime}(n)=2^{u} \ln 2
\end{aligned}
$$

$$
\begin{aligned}
& =2^{\cos x} \ln 2(-\sin x) \\
& =-\sin x(\ln 2) 2^{\cos x}
\end{aligned}
$$

Question

$$
\frac{d}{d x} 7^{x^{2}}=
$$

(a) $7^{x^{2}}$
(b) $(2 x) 7^{x^{2}}$
(C) $(2 x) 7 x^{2} \ln 7$
(d) $7^{x^{2}} \ln 7$

