February 21 Math 1190 sec. 63 Spring 2017

Chapter 2: Derivatives

Let's recall the definitions and derivative rules we have so far:

Let's assume that y = f(x) is a function with *c* in it's domain. The **derivative** of *f* at *c* is

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{h \to 0} \frac{f(c + h) - f(c)}{h}$$

February 17, 2017

1 / 105

provided the limit exists.

Notes on Notation

If y = f(x), we have the Leibniz notation for the derivative function

$$f'(x)=rac{dy}{dx}.$$

We can use this notation for the derivative **at a point** in the following well accepted way

$$f'(c) = \left. \frac{dy}{dx} \right|_c$$

For example, if $y = x^2$, then

$$\frac{dy}{dx} = 2x$$
, and $\frac{dy}{dx}\Big|_3 = 6.$

イロト 不得 トイヨト イヨト 二日

February 17, 2017

2/105

The Derivative Function

For y = f(x), the derivative

$$\frac{dy}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Another, sometimes convenient formulation of this is

$$\frac{dy}{dx} = f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x}$$

イロト 不得 トイヨト イヨト 二日

February 17, 2017

3 / 105

using a **dummy variable** (a place keeper) *z*.

Derivative Rules

Constant:
$$\frac{d}{dx}c = 0$$

Identity:
$$\frac{d}{dx}x = 1$$

Power:
$$\frac{d}{dx}x^n = nx^{n-1}$$
 for integers *n*

<ロ> <四> <四> <四> <四> <四</p>

February 17, 2017

4 / 105

Exponential: $\frac{d}{dx}e^x = e^x$

Derivative Rules

Constant Factor:
$$\frac{d}{dx}kf(x) = kf'(x)$$

Sum or Difference:
$$\frac{d}{dx}(f(x)\pm g(x))=f'(x)\pm g'(x)$$

Product:
$$\frac{d}{dx}f(x)g(x) = f'(x)g(x)+f(x)g'(x)$$

Quotient:
$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

イロト イポト イヨト イヨト 二日

February 17, 2017

5/105

Six Trig Function Derivatives

$$\frac{d}{dx}\sin x = \cos x,$$

$$\frac{d}{dx}\cos x = -\sin x,$$

$$\frac{d}{dx}\tan x = \sec^2 x,$$

$$\frac{d}{dx}\cot x = -\csc^2 x,$$

$$\frac{d}{dx} \sec x = \sec x \tan x,$$

$$\frac{d}{dx}\csc x = -\csc x\cot x$$

(日)

February 17, 2017

6 / 105

Suppose $y = 2xe^x$. Evaluate $\frac{dy}{dx}\Big|_{0}$

$$\frac{dy}{dx} = 2e^{x} + 2xe^{x}$$
$$\frac{dy}{dx} = 2e^{e} + 2\cdot 2e^{e} = 2$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ February 17, 2017

7/105

(c) $\left. \frac{dy}{dx} \right|_0 = 2e$

(a) $\left. \frac{dy}{dx} \right|_0 = 0$

(b)

 $\left.\frac{dy}{dx}\right|_{0} = 2$

(d)
$$\left. \frac{dy}{dx} \right|_0 = e$$

True or False: If *f* is differentiable at *c*, then the slope, m_{tan} , of the line tangent to the graph of *f* at the point (c, f(c)) is

$$m_{tan} = f'(c).$$

Derivative, slope of the tangent line, rate of change
these are the same concept

February 17, 2017

8 / 105

Using the quotient rule,

$$\frac{d}{dx}\frac{\cos x}{x^3+2} =$$

イロト イヨト イヨト イヨト

February 17, 2017

2

9/105

(a)
$$\frac{-\sin x}{3x^2}$$

(b) $\frac{-(x^3+2)\sin x - 3x^2\cos x}{x^6+4}$
(c) $\frac{(x^3+2)\sin x + 3x^2\cos x}{(x^3+2)^2}$
(d) $\frac{-(x^3+2)\sin x - 3x^2\cos x}{(x^3+2)^2}$

Section 3.1: The Chain Rule

Suppose we wish to find the derivative of $f(x) = (x^2 + 2)^2$.

we can expand f first $f(x) = x^4 + 4x^2 + 4$

 $f'(x) = 4x^3 + 8x$

< □ ト < □ ト < 亘 ト < 亘 ト < 亘 ト 三 のへで February 17, 2017 10 / 105

Compositions

Now suppose we want to differentiate $G(x) = (x^2 + 2)^{10}$. How about $F(x) = \sqrt{x^2 + 2}$?

February 17, 2017 11 / 105

Example of Compositions

Find functions f(u) and g(x) such that

$$F(x) = \sqrt{x^2 + 2} = (f \circ g)(x).$$

The composition follows regular order of operations, $g(x) = x^2 + 2$, f(u) = JuCheck: $(f \circ g)(x) = f(g(x)) = f(x^2 + 2) = Jx^2 + 2$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Example of Compositions

Find functions f(u) and g(x) such that

$$F(x) = \cos\left(\frac{\pi x}{2}\right) = (f \circ g)(x).$$

$$G(x) = \frac{\pi}{2} x$$
, $f(u) = Cos(u)$

Check:
$$(f \circ g)(x) = f(g(x)) = f(\frac{\pi}{2}x) = Cos(\frac{\pi}{2}x)$$

February 17, 2017 13 / 105

э

<ロ> <問> <問> < 回> < 回> 、

7

Theorem: Chain Rule

Suppose *g* is differentiable at *x* and *f* is differentiable at g(x). Then the composite function

$$F = f \circ g$$

is differentiable at x and

$$\frac{d}{dx}F(x) = \frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

In Liebniz notation: if y = f(u) and u = g(x), then

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

イロト 不得 トイヨト イヨト 二日

February 17, 2017

14 / 105

Example

Determine any inside and outside functions and find the derivative.

(a)
$$F(x) = \sin^2 x = \left(\operatorname{Sin}_X \right)^2$$

$$u = g(x) = Sinx, \quad g'(x) = Corx$$

$$f(u) = u^{2}, \quad f'(u) = 2u$$

$$f(g(x)) \qquad \qquad F'(x) = f'(g(u)) \quad g'(x)$$

$$= f(g(x)) \qquad \qquad = 2Sinx \quad Corx = 2Sinx \quad Corx$$

$$= f(Sinx)^{2}$$

February 17, 2017 15 / 105

イロト イヨト イヨト イヨト

(b)
$$F(x) = e^{x^4 - 5x^2 + 1} = e^{x^4} \left(x^4 - 5x^4 + 1 \right)$$

$$u = g(x) = x^{4} - 5x^{2} + 1, \quad g'(x) = 4x^{3} - 10x$$

$$f(u) = e^{u}, \quad f'(u) = e^{u}$$

$$F'(x) = f'(g(u))g'(x) = e^{-x^{4} - 5x^{2} + 1}, \quad (4x^{3} - 10x)$$

$$= (4x^{3} - 10x)e^{-x^{3} - 5x^{3} + 1}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ February 17, 2017 16 / 105

If
$$G(\theta) = \cos\left(\frac{\pi\theta}{2} - \frac{\pi}{4}\right) = f(g(\theta))$$
 where
 $f(u) = \cos u$, and $g(\theta) = \frac{\pi\theta}{2} - \frac{\pi}{4}$, then
 $g'(\theta) = \frac{\pi}{2}$
(a) $G'(\theta) = -\frac{\pi}{2}\sin\theta$
 $f'(\omega) = -\sin(\frac{\pi\theta}{2}) + \sin(\frac{\pi}{4})$
(c) $G'(\theta) = -\sin(\frac{\pi\theta}{2}) + \sin(\frac{\pi}{4})$

February 17, 2017 17 / 105

▲目▶ 目 のへで

The power rule with the chain rule

If u = g(x) is a differentiable function and *n* is any integer, then

$$rac{d}{dx}u^n=nu^{n-1}rac{du}{dx}.$$

Evaluate:
$$\frac{d}{dx}e^{7x} = \frac{d}{dx}(e^{x})^{7}$$

 $= 7(e^{x})^{6} \cdot e^{x}$
 $= 7e^{6x} \cdot e^{x}$
 $= 1e^{7x}$
 $u = e^{x} f(u) = u^{7}$
 $\frac{du}{dx} = e^{x} f'(u) = 7u^{6}$

February 17, 2017 18 / 105

Evaluate $\frac{d}{dx}\sin^4(x) = \frac{d}{dx}(\sin x)^4$

(a) $4\cos^3(x)$

(b) $4\sin^3(x)\cos^3(x)$

(c)
$$4\sin^3(x)\cos(x)$$

(d) $-4\sin^3(x)\cos(x)$

Example

Find the equation of the line tangent to the graph of $y = \cos^2 x$ at the point $(\frac{\pi}{4}, \frac{1}{2})$. we need M_{ten} . $M_{\text{ten}} = \frac{dy}{dx} \Big|_{\pi/2}$

$$y = (\cos x)^{2}$$

$$\frac{dy}{dx} = 2(\cos x) \cdot (-\sin x)$$

$$= -2\cos x \sin x$$

$$M_{trn} = -2 \cos \frac{\pi}{4} \sin \frac{\pi}{4}$$

= $-2(\frac{\pi}{42})(\frac{\pi}{42}) = -\frac{2}{2} = -1$

Figure: $y = \cos^2 x$ and the tangent line at $(\frac{\pi}{4}, \frac{1}{2})$.

We may be able to choose between differentiation methods.

Evaluate
$$\frac{d}{dx} \frac{\sin x}{x^3 + 2}$$
 using

(a) The quotient rule:

$$\frac{d}{dx} \frac{\sin x}{x^3 + 2} = \frac{\cos x (x^3 + 2) - \sin x (3x^2)}{(x^3 + 2)^2}$$

= $\frac{(x^3 + 2) \cos x - 3x^2 \sin x}{(x^3 + 2)^2}$
= $\frac{(x^3 + 2) (\cos x - 3x^2 \sin x)}{(x^3 + 2)^2}$
= $\frac{(x^3 + 2) (\cos x)}{(x^3 + 2)^2} - \frac{3x^3 \sin x}{(x^3 + 2)^2} = \frac{\cos x}{x^3 + 2} - \frac{3x^3 \sin x}{(x^3 + 2)^2}$

February 17, 2017 23 / 105

(b) writing $\frac{\sin x}{x^3+2} = (\sin x)(x^3+2)^{-1}$ and using the chain rule.

$$\frac{d}{dx} \frac{S_{inx}}{x^3+2} = C_{osx} \left(x^3+2 \right) + S_{inx} \left(-\left[\left(x^3+2 \right) \right] \cdot \left(3x^2 \right) \right)$$

$$= \frac{C_{0}r_{x}}{\chi^{3}+2} - Sin \chi (\chi^{3}+2)^{2} (3\chi^{2})$$

$$= \frac{C_{01} \times x}{x^3 + 2} - \frac{3x^2 \sin x}{(x^3 + 2)^2}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Suppose that g(x) is differentiable. The derivative of $e^{g(x)}$ is (Hint: The *outside* function is e^u , and the *inside* function is g(x).)

イロト 不得 トイヨト イヨト 二日

February 17, 2017

25 / 105

(a)
$$e^{g(x)} g'(x)$$

(b) $e^{g(x)}$

(c) $e^{g'(x)}$

$$\frac{1}{dx} e^{g(x)} = e^{g(x)}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

26 / 105

Find the equation of the line tangent to the graph of $f(x) = e^{\sin x}$ at the point (0, f(0)).

(a)
$$y = x + 1$$

(b) $y = 1$
 $f'(0) = 1$

(c) y = x - 1

(d) y = ex + 1

Multiple Compositions

The chain rule can be iterated to account for multiple compositions. For example, suppose f, g, h are appropriately differentiable, then

$$\frac{d}{dx}(f \circ g \circ h)(x) = \frac{d}{dx}f(g(h(x))) = f'(g(h(x))g'(h(x))h'(x))$$

February 17, 2017 27 / 105

Note that the outermost function is f, and its inner function is a composition g(h(x)).

So the derivative of the outer function evaluated at the inner is f'(g(h(x))) which is multiplied by the derivative of the inner function—**itself based on the chain rule**—g'(h(x))h'(x).

Example

Evaluate the derivative

$$\frac{d}{dt}\tan^2\left(\frac{1}{3}t^3\right) = \frac{d}{dt} \left(t_{cm}\left(\frac{1}{3}t^3\right)\right)^2$$

$$v = h(t) = \frac{1}{2}t^{3}$$
, $h'(t) = t^{2}$
 $u = g(v) = tav$, $g'(v) = sec^{2}v$
 $f(u) = u^{2}$, $f'(u) = 2u$

$$\frac{d}{dt} t_{n}^{2}(\frac{1}{3}t^{2}): 2 t_{n} v Se_{v}^{2} v \cdot t^{2} = 2 t_{n}(\frac{1}{3}t^{3})S_{v}^{2}(\frac{1}{3}t^{3})t^{2}$$
$$= 2t^{2} t_{n}(\frac{1}{3}t^{3})S_{v}^{2}(\frac{1}{3}t^{3})$$

・ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q (*)
February 17, 2017 28 / 105

Exponential of Base a

Let a > 0 with $a \neq 1$. By properties of logs and exponentials

$$a^{x} = e^{(\ln a)x} = e^{\ln a}$$

$$(\ln a)x \quad is \quad a \quad constant \quad times \quad x \quad \frac{d}{dx} (\ln a)x = \ln a$$

$$\frac{d}{dx} \quad a^{x} = \frac{d}{dx} \quad e^{(\ln a)x} = e^{(\ln a)x} \quad ha \quad a \quad x \quad ha$$

X ٨

February 17, 2017

29 / 105

Theorem: (Derivative of $y = a^x$) Let a > 0 and $a \neq 1$. Then

$$\frac{d}{dx}a^x = a^x \ln a$$

Exponential of Base a

Theorem: (Derivative of $y = a^x$) Let a > 0 and $a \neq 1$. Then

$$\frac{d}{dx}a^x = a^x \ln a$$

Recall from before that if $f(x) = a^x$ then

$$\frac{d}{dx}a^x = f'(0)a^x$$
 where $f'(0) = \lim_{h \to 0} \frac{a^h - 1}{h}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで February 17, 2017

30 / 105

We now see that the number $f'(0) = \ln(a)$.

Example

Evaluate

(a)
$$\frac{d}{dx}4^x = 4^x \int_{u}4^{u}$$
 $\frac{d}{dx}a^x = a^x \int_{u}a^x \int_{u}a^x \int_{u}a^x = a^x \int_{u}a^x \int_{u}$

(b)
$$\frac{d}{dx} 2^{\cos x}$$

= $2^{\cos x} \ln 2 \left(-\sin x\right)$
= $-\sin x \left(\ln 2\right) 2^{\cos x}$

$$u = g(x) = Corx$$
, $g'(x) = -Sinx$
 $f(u) = 2^{u}$, $f'(u) = 2^{u} \ln 2$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ● February 17, 2017

31 / 105

×

$$\frac{d}{dx}7^{x^2} =$$

(a) 7^{x²}

(b) $(2x)7^{x^2}$

(c)
$$(2x)7^{x^2} \ln 7$$

(d)
$$7^{x^2} \ln 7$$