February 22 Math 2306 sec. 57 Spring 2018

Section 8: Homogeneous Equations with Constant Coefficients

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$
, a, b, c —constant

has characteristic equation is $am^2 + bm + c = 0$.

If the roots of the characteristic equation are

 $ightharpoonup m_1 \neq m_2$ (distinct and real), the general solution

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

 $ightharpoonup m_1 = m_2 = m$ (one repeated real), the general solution

$$y = c_1 e^{mx} + c_2 x e^{mx}$$

• $m = \alpha \pm i\beta$ (complex conjugates), the general solution

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

Solve the initial value problem

$$y'' + 6y' + 13y = 0 \quad y(0) = 0, \quad y'(0) = 1$$
Char. Eqn $m^2 + 6m + 13 = 0$
We'll complete the square
$$m^2 + 6m + 9 - 9 + 13 = 0$$

$$(m^2 + 6m + 9) + 4 = 0$$

$$(m^2 + 6m + 9) + 4 = 0$$

$$(m+3)^2 + 4 = 0$$

$$(m+3)^2 + 4 = 0$$

$$(m+3)^2 = -4 \implies m+3 = \pm \sqrt{-4} = \pm 2i$$

$$m = -3 \pm 2i \qquad d = -3, \quad \beta = 2$$

$$y_1 = e^{-3x} Cos(2x), \quad y_2 = e^{-3x} Sin(2x)$$

General solution

$$y(0) = C_1 e^{\circ} (\omega_1(0) + (1e^{\circ} Sin(0)) = 0$$

$$C_1 + O = 0 \implies C_1 = 0$$

$$y'(0) = -3f_1e^{i}\cos(6) - 2d_1e^{i}\sin(6) - 3c_2e^{i}\sin(6) + 2c_2e^{i}\cos(6) = 1$$

$$2c_2 = 1$$

$$c_2 = \frac{1}{7}$$

The solution to the IVP is

Find the general solution of the ODE

$$\frac{d^2u}{dt^2} - \frac{du}{dt} - u = 0$$

Characteristic egn

$$M = \frac{1 \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} : \frac{1 \pm \sqrt{5}}{2} = \frac{1}{2} \pm \frac{15}{2}$$

$$3 \text{ Led Loops} \quad W^1 = \frac{7}{7} + \frac{5}{12} \quad W^2 = \frac{5}{7} - \frac{5}{12}$$

$$y_1 = Q \qquad y_2 = Q \qquad (\frac{1}{2} - \frac{15}{2})x$$

The general solution

Higer Order Linear Constant Coefficient ODEs

▶ If a root *m* is real repeated *k* times, we get *k* linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

▶ If $m = \alpha \pm i\beta$ is a repeated pair of complex conjugate roots repeated k times, we get 2k solutions

$$e^{\alpha x}\cos(\beta x), \ e^{\alpha x}\sin(\beta x), \ xe^{\alpha x}\cos(\beta x), \ xe^{\alpha x}\sin(\beta x), \dots,$$

$$x^{k-1}e^{\alpha x}\cos(\beta x), \ x^{k-1}e^{\alpha x}\sin(\beta x)$$

It may require a computer algebra system to find the roots for a high degree polynomial.

Example

Find the general solution of the ODE

$$y'''-3y''+3y'-y=0$$
Characteristic eqn
$$m^3-3m^2+3m-1=0$$
This is
$$(m-1)^3=0$$

$$m=1, triple root$$

$$y_1=e^{x}, y_2=xe^{x}, y_3=x^2e^{x}$$

February 21, 2018 9 / 10

General solution