February 22 Math 2306 sec. 60 Spring 2018

Section 8: Homogeneous Equations with Constant Coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0, \quad a, b, c-\text { constant }
$$

has characteristic equation is $a m^{2}+b m+c=0$.
If the roots of the characteristic equation are

- $m_{1} \neq m_{2}$ (distinct and real), the general solution

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

- $m_{1}=m_{2}=m$ (one repeated real), the general solution

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

- $m=\alpha \pm i \beta$ (complex conjugates), the general solution

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Solve the initial value problem

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0 \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Find the givenal solution to the ODE.
Characteristic eqn

$$
m^{2}+6 n+13=0
$$

Complete the square

$$
\begin{gathered}
m^{2}+6 m+9-9+13=0 \\
\left(m^{2}+6 m+9\right)+4=0 \\
(m+3)^{2}+4=0 \\
(m+3)^{2}=-4
\end{gathered}
$$

$$
\begin{gathered}
m+3= \pm \sqrt{-4}= \pm 2 i \\
m=-3 \pm 2 i \quad \alpha=-3, \beta=2 \\
y_{1}=e^{-3 x} \cos (2 x), y_{2}=e^{-3 x} \sin (2 x)
\end{gathered}
$$

Gen. solution

$$
y=c_{1} e^{-3 x} \cos (2 x)+c_{2} e^{-3 x} \sin (2 x)
$$

Now impose the conditions $y(0)=0, y^{\prime}(0)=1$

$$
y^{\prime}(x)=-3 c_{1} e^{-3 x} \cos (2 x)-2 c_{1} e^{-3 x} \sin (2 x)-3 c_{2} e^{-3 x} \sin (2 x)+2 c_{2} e^{-3 x} \cos (2 x)
$$

$$
\begin{array}{rl}
y(0)=c_{1} e^{\circ} \cos (0)+c_{2} e^{0} \sin (0) & =0 \\
c_{1}+0=0 \quad & \Rightarrow \quad c_{1}=0 \\
y^{\prime}(0)=-3 c_{1} e^{\circ} \cos (0)-2 c_{1} e^{\circ} \sin (0)-3 c_{2} e^{\circ} \sin (0)+2 c_{2} e^{\circ} \cos (0)=1 \\
0 & 0+2 c_{2}=1 \\
c_{2}=\frac{1}{2}
\end{array}
$$

The solution to the IVP

$$
y=\frac{1}{2} e^{-3 x} \sin (2 x)
$$

Find the general solution of the ODE

$$
\frac{d^{2} u}{d t^{2}}-\frac{d u}{d t}-u=0
$$

Cheractuistic ego

$$
m^{2}-m-1=0
$$

quadratic formula

$$
m=\frac{1 \pm \sqrt{(-1)^{2}-4 \cdot 1(-1)}}{2 \cdot 1}=\frac{1 \pm \sqrt{5}}{2}=\frac{1}{2} \pm \frac{\sqrt{5}}{2}
$$

2 real roots

$$
m_{1}=\frac{1}{2}+\frac{\sqrt{5}}{2} \quad, m_{2}=\frac{1}{2}-\frac{\sqrt{5}}{2}
$$

$$
\begin{gathered}
u_{1}=e^{\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right) t}, u_{2}=e^{\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right) t} \\
\text { The gina solution }_{\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right) t}^{u} c_{1} e^{\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right) t}+c_{2} e
\end{gathered}
$$

Higer Order Linear Constant Coefficient ODEs

- If a root m is real repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

- If $m=\alpha \pm i \beta$ is a repeated pair of complex conjugate roots repeated k times, we get $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

- It may require a computer algebra system to find the roots for a high degree polynomial.

Example
Find the general solution of the ODE

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Characteristic an

$$
\begin{gathered}
m^{3}-3 m^{2}+3 m-1=0 \\
(m-1)^{3}=0
\end{gathered}
$$

$m=1$ triple root

$$
y_{1}=e^{x}, y_{2}=x e^{x}, y_{3}=x^{2} e^{x}
$$

General solution

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

