February 22 Math 3260 sec. 55 Spring 2018

Section 2.3: Characterization of Invertible Matrices

Given an $n \times n$ matrix A, we can think of

- A matrix equation $A \mathbf{x}=\mathbf{b}$;
- A linear system that has A as its coefficient matrix;
- A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ defined by $T(\mathbf{x})=A \mathbf{x}$;
- Not to mention things like its pivots, its rref, the linear dependence/independence of its columns, blah blah blah...

Question: How is this stuff related, and how does being singular or invertible tie in?

Theorem: Suppose A is $n \times n$. The following are equivalent. ${ }^{1}$

(a) A is invertible.
(b) A is row equivalent to I_{n}.
(c) A has n pivot positions.
(d) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
(e) The columns of A are linearly independent.
(f) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is one to one.
(g) $A \mathbf{x}=\mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^{n}.
(h) The columns of A span \mathbb{R}^{n}.
(i) The transformation $\mathbf{x} \mapsto A \mathbf{x}$ is onto.
(j) There exists an $n \times n$ matrix C such that $C A=I$.
(k) There exists an $n \times n$ matrix D such that $A D=I$.
(I) A^{T} is invertible.
${ }^{1}$ Meaning all are true or none are true.

Theorem: (An inverse matrix is unique.)
Let A and B be $n \times n$ matrices. If $A B=I$, then A and B are both invertible with $A^{-1}=B$ and $B^{-1}=A$.

To see this, consider the homogeneous egn $B \vec{x}=\overrightarrow{0}$. Malt. pl, on the left by A.

$$
A B \vec{x}=A \overrightarrow{0} \Rightarrow I \vec{x}=\overrightarrow{0} \Rightarrow \vec{x}=\overrightarrow{0}
$$

The homogeneous equation for B has only the trivia solution. So B is invertible by the previous theorem, ie. B^{-1} exists.

Tale
$A B=I$ molt by B^{-1} on the right.

$$
A B B^{-1}=I B^{-1} \Rightarrow A I=B^{-1} \Rightarrow A=B^{-1}
$$

Since B^{-1} is also invertible, we know that
A is invertible. And

$$
A^{-1}=\left(B^{-1}\right)^{-1}=B
$$

Invertible Linear Transformations

Definition: A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is said to be invertible if there exists a function $S: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ such that both

$$
S(T(\mathbf{x}))=\mathbf{x} \quad \text { and } \quad T(S(\mathbf{x}))=\mathbf{x}
$$

for every \mathbf{x} in \mathbb{R}^{n}.

If such a function exists, we typically denote it by

$$
S=T^{-1}
$$

Theorem (Invertibility of a linear transformation and its matrix)

Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear transformation and A its standard matrix. Then T is invertible if and only if A is invertible. Moreover, if T is invertible, then

$$
T^{-1}(\mathbf{x})=A^{-1} \mathbf{x}
$$

for every \mathbf{x} in \mathbb{R}^{n}.

Example
Use the standard matrix to determine if the linear transformation is invertible. If it is invertible, characterize the inverse transformation.

$$
T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}, \quad \text { given by } \quad T\left(x_{1}, x_{2}\right)=\left(3 x_{1}-x_{2}, 4 x_{2}\right)
$$

Find the standard matrix A.

$$
\begin{gathered}
T\left(\vec{e}_{1}\right)=T(1,0)=(3,0), T\left(\vec{e}_{2}\right)=T(0,1)=(-1,4) \\
A:\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]=\left[\begin{array}{ll}
3 & -1 \\
0 & 4
\end{array}\right] \\
\operatorname{det}(A)=3 \cdot 4-0(-1)=12 \quad \operatorname{dt}(A) \neq 0, A^{-1} \text { exists } \\
A^{-1}=\frac{1}{12}\left[\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right]
\end{gathered}
$$

T is invertible since A is.

$$
\begin{aligned}
T^{-1}(\vec{x}) & =A^{-1} \vec{x}=\frac{1}{12}\left[\begin{array}{ll}
4 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\frac{1}{12}\left[\begin{array}{c}
4 x_{1}+x_{2} \\
3 x_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{3} x_{1}+\frac{1}{12} x_{2} \\
\frac{1}{4} x_{2}
\end{array}\right]
\end{aligned}
$$

we car write

$$
T^{-1}\left(x_{1}, x_{2}\right)=\left(\frac{1}{3} x_{1}+\frac{1}{12} x_{2}, \frac{1}{4} x_{2}\right)
$$

Example

Suppose $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is a one to one linear transformation. Can we determine whether T is onto? Why (or why not)?

Twas a square, $n \times n$, standard matrix A.
were given that $\vec{x} \mapsto A \vec{x}$ is one to one.
From our theorem $(f) \Rightarrow(i)$. That is $\vec{x} \mapsto A \vec{x}$ is onto. $T(\vec{x})$ is $A \vec{x}$!
so T is also onto.

Section 3.1: Introduction to Determinants

Recall that a 2×2 matrix is invertible if and only if the number called its determinant is nonzero. We had

$$
\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}
$$

We wish to extend the concept of determinant to $n \times n$ matrices in general. And we wish to do so in such a way that invertibility holds if and only if the determinant is nonzero.

Determinant 3×3 case:

Suppose we start with a 3×3 invertible matrix. And suppose that $a_{11} \neq 0$. We can multiply the second and third rows by a_{11} and begin row reduction.

$$
\begin{gathered}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \sim\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{11} a_{21} & a_{11} a_{22} & a_{11} a_{23} \\
a_{11} a_{31} & a_{11} a_{32} & a_{11} a_{33}
\end{array}\right]} \\
{\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{11} a_{22}-a_{12} a_{21} \\
0 & a_{11} a_{32}-a_{23}-a_{13} a_{21} \\
a_{11} a_{33}-a_{13} a_{31}
\end{array}\right]}
\end{gathered}
$$

Determinant 3×3 case continued...

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{13} a_{31}
\end{array}\right]
$$

If $A \sim I$, one of the entries in the 2,2 or the 3,2 position must be nonzero. Let's assume it is the 2,2 entry. Continue row reduction to get

$$
A \sim\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
$$

Again, if A is invertible, it must be that the bottom right entry is nonzero. That is

$$
\Delta \neq 0
$$

Note that if $\Delta=0$, the rref of A is not $l-A$ would be singular.

Determinant 3×3 case continued...

With a little rearrangement, we have

$$
\begin{aligned}
\Delta & =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+ \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right]
\end{aligned}
$$

The number Δ will be called the determinant of A.

Definitions: Minors

Let $n \geq 2$. For an $n \times n$ matrix A, let $A_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained from A by deleting the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of A.

For example, if

$$
A=\left[\begin{array}{cccc}
-1 & 3 & 2 & 0 \\
4 & 4 & 0 & -3 \\
-2 & 1 & 7 & 2 \\
3 & 0 & -1 & 6
\end{array}\right] \text { then } A_{23}=\left[\begin{array}{ccc}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right]
$$

Definition: The $i, j{ }^{\text {th }}$ minor of the $n \times n$ matrix A is the number

$$
M_{i j}=\operatorname{det}\left(A_{i j}\right)
$$

Definitions: Cofactor

Definition: Let A be an $n \times n$ matrix with $n \geq 2$. The $i, j j^{\text {th }}$ cofactor of A is the number

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

Example: Find the three minors M_{11}, M_{12}, M_{13} and find the 3 cofactors C_{11}, C_{12}, C_{13} of the matrix

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] . \quad \begin{aligned}
& M_{11}
\end{aligned}=\operatorname{det}\left(A_{11}\right)
$$

(Example Continued...)

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] . \\
& M_{11}=a_{22} \cdot a_{33}-a_{32} a_{23} \\
& A_{12}=\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right] M_{12}=a_{21} a_{33}-a_{31} a_{23} \\
& A_{13}=\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \quad m_{13}=a_{21} a_{32}-a_{31} a_{22}
\end{aligned}
$$

$$
\begin{aligned}
c_{11} & =(-1)^{1+1} M_{11}=(-1)^{2} M_{11}=M_{11} \\
& =a_{22} a_{33}-a_{32} a_{23} \\
C_{12} & =(-1)^{1+2} M_{12}=(-1)^{3} M_{12}=-M_{12} \\
& =-\left(a_{21} a_{33}-a_{31} a_{23}\right) \\
C_{13} & =(-1)^{1+3} M_{13}=(-1)^{4} M_{13}=M_{13} \\
& =a_{21} a_{32}-a_{31} a_{22}
\end{aligned}
$$

Observation:

Comparison with the determinant of the 3×3 matrix, we can note that

$$
\begin{aligned}
\Delta= & a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \\
& =a_{11} c_{11}+a_{12} c_{12}+a_{13} c_{13}
\end{aligned}
$$

