February 23 Math 1190 sec. 63 Spring 2017

Section 3.2: Implicit Differentiation; Derivatives of the Inverse Trigonometric Functions

The chain rule states that for a differentiable composition $f(g(x))$

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

For $y=f(u)$ and $u=g(x)$

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Example
Assume f is a differentiable function of x. Find an expression for the derivative:

$$
\begin{array}{rlrl}
\frac{d}{d x}(f(x))^{2} & =2(f(x)) f^{\prime}(x) & & \text { Chain rule } \\
& =2 f(x) f^{\prime}(x) & & u=f(x), \frac{d u}{d x}=f^{\prime}(x) \\
& & \frac{d}{d u} u^{2}=2 u
\end{array}
$$

$$
\frac{d}{d x} \tan (f(x))=\sec ^{2}(f(x)) \cdot f^{\prime}(x) \quad \text { Were } \quad \frac{d}{d u} \tan u=\sec ^{2} u
$$

Example
Suppose we know that $y=f(x)$ for some differentiable function (but we don't know exactly what f is). Find an expression for the derivative.

$$
\frac{d}{d x} y^{2}=2 y \frac{d y}{d x}
$$

we do the same, except express $f^{\prime}(x)$ as $\frac{d y}{d x}$
we need the product

$$
\begin{aligned}
& \frac{d}{d x} x^{2} y^{2} \\
& =f^{\prime} y \quad f y^{\prime} \\
& =2 x y^{2}+x^{2}(2 y) \frac{d y}{d x} \\
& =2 x y^{2}+2 x^{2} y \frac{d y}{d x}
\end{aligned}
$$ rule for the product x^{2} times y^{2}

Question

If y is some function of x (but we don't know the specifics), then
$\frac{d}{d x} y^{3}=$
(a) $\left(\frac{d y}{d x}\right)^{3}$
(b) $3 y^{2} \frac{d y}{d x}$
(c) $3\left(\frac{d y}{d x}\right)^{2}$

Let's Double Check with an Example:

Let $y=x^{2} \quad$ so that $\quad \frac{d y}{d x}=2 x$ and $y^{3}=x^{6}$.
Compute with the power rule $\frac{d}{d x} y^{3}=\frac{d}{d x} x^{6}=6 x^{5}$
Now take a moment and compute each of
(a) $\left(\frac{d y}{d x}\right)^{3}=(2 x)^{3}=8 x^{3}$
(b) $3 y^{2} \frac{d y}{d x}=3\left(x^{2}\right)^{2}(2 x)=6 x^{4} \cdot x=6 x^{5}$
(c) $3\left(\frac{d y}{d x}\right)^{2}=3(2 x)^{2}=3\left(4 x^{2}\right)=12 x^{2}$

Implicitly defined functions

A relation-an equation involving two variables x and y-such as

$$
x^{2}+y^{2}=16 \text { or }\left(x^{2}+y^{2}\right)^{3}=x^{2}
$$

implies that y is defined to be one or more functions of x.

$$
\begin{array}{r}
\text { The first gives } 2 \text { functions: } \\
y^{2}=16-x^{2} \Rightarrow y=\sqrt{16-x^{2}} \text { or } \\
\qquad y=-\sqrt{16-x^{2}}
\end{array}
$$

Figure: $x^{2}+y^{2}=16$

Figure: $\left(x^{2}+y^{2}\right)^{3}=x^{2}$

February 21, 2017

Explicit -vs- Implicit
A function is defined explicitly when given in the form

$$
y=f(x)
$$

e.8. $y=\tan x$ or $y=e^{x}$ or

$$
y=x^{3}+x e^{x}
$$

A function is defined implicitly when it is given as a relation

$$
F(x, y)=C
$$

for constant C.

$$
\text { e.g. } x^{2}+y^{2}=16 \text { or } x e^{y}+y e^{x}=0
$$

Implicit Differentiation
Since $x^{2}+y^{2}=16$ implies that y is a function of x, we can consider it's derivative.

Find $\frac{d y}{d x}$ given $x^{2}+y^{2}=16$.
Take $\frac{d}{d x}$ of both sides:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+y^{2}\right) & =\frac{d}{d x}(16) \\
\frac{d}{d x} x^{2}+\frac{d}{d x} y^{2} & =\frac{d}{d x} 16=0 \\
2 x+2 y \frac{d y}{d x}=0 & \Rightarrow 2 y \frac{d y}{d x}=-2 x \\
\frac{d y}{d x}=\frac{-2 x}{2 y} & \Rightarrow \frac{d y}{d x}=\frac{-x}{y}
\end{aligned}
$$

Show that the same result is obtained knowing

$$
y=\sqrt{16-x^{2}} \text { or } y=-\sqrt{16-x^{2}}
$$

I'Il λ_{0} the $2^{n d}$ one, the first is
left as on exercise.
we need: $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$
Let $y=-\sqrt{16-x^{2}}$

$$
\frac{d y}{d x}=-\left(\frac{1}{2 \sqrt{16-x^{2}}}\right) \cdot(0-2 x)
$$

Chain rube

$$
\begin{aligned}
\frac{d y}{d x} & =-\frac{-2 x}{-\sqrt{16-x^{2}}}=-\frac{-x}{\sqrt{16-x^{2}}} \\
& =-\frac{x}{-\sqrt{16-x^{2}}} \quad \begin{aligned}
\text { But } \\
y=-\sqrt{16-x^{2}}
\end{aligned} \\
& =-\frac{x}{y} \quad \text { as expected, }
\end{aligned}
$$

Example

$$
\begin{gathered}
\text { Find } \frac{d y}{d x} \text { given } x^{2}-3 x y+y^{2}=y . \\
\frac{d}{d x}\left(x^{2}-3 x^{1} y+y^{2}\right)=\frac{d}{d x} y \\
2 x-3\left(1 \cdot y+x \cdot \frac{d y}{d x}\right)+2 y \frac{d y}{d x}=\frac{d y}{d x} \\
2 x-3 y-3 x \frac{d y}{d x}+2 y \frac{d y}{d x}=\frac{d y}{d x} \quad \text { Solve } \\
2 y \frac{d y}{d x}-3 x \frac{d y}{d x}-\frac{d y}{d x}=3 y-2 x \\
(2 y-3 x-1) \frac{d y}{d x}=3 y-2 x \\
\Rightarrow \frac{d y}{d x}=\frac{\text { for } \frac{d y}{d x}}{2 y-3 x-1}
\end{gathered}
$$

Finding a Derivative Using Implicit Differentiation:

- Take the derivative of both sides of an equation with respect to the independent variable.
- Use all necessary rules for differenting powers, products, quotients, trig functions, exponentials, compositions, etc.
- Remember the chain rule for each term involving the dependent variable (e.g. mult. by $\frac{d y}{d x}$ as required).
- Use necessary algebra to isolate the desired derivative $\frac{d y}{d x}$.

Example $\quad \frac{d S}{d r} \quad S$-dependent, r independent Find $\frac{d S}{d r}$.

$$
\begin{gathered}
e^{S r}+S=r^{2}+2 \\
\frac{d}{d r}\left(e^{S r}+S\right)=\frac{d}{d r}\left(r^{2}+2\right) \\
e^{S r} \frac{d}{d r}(S r)+\frac{d S}{d r}=2 r \\
e^{S r}\left(\frac{d S}{d r} r+S \cdot 1\right)+\frac{d S}{d r}=2 r \\
r e^{S r} \frac{d S}{d r}+S e^{S r}+\frac{d S}{d r}=2 r
\end{gathered}
$$

$$
\begin{gathered}
r e^{S r} \frac{d S}{d r}+\frac{d S}{d r}=2 r-S e^{S r} \\
\left(r e^{S r}+1\right) \frac{d S}{d r}=2 r-S e^{S r} \\
\frac{d S}{d r}=\frac{2 r-S e^{S r}}{r e^{S r}+1}
\end{gathered}
$$

Example
Find the equation of the line tangent to the graph of $x^{3}+y^{3}=6 x y$ at the point $(3,3)$.
$\frac{d y}{d x}$ still sines the slope of the tangent line. So we find $\frac{d y}{d x}$:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3}+y^{3}\right)=\frac{d}{d x}(6 x y) \\
& 3 x^{2}+3 y^{2} \frac{d y}{d x}=6\left(1 \cdot y+x \cdot \frac{d y}{d x}\right) \\
& 3 x^{2}+3 y^{2} \frac{d y}{d x}=6 y+6 x \frac{d y}{d x}
\end{aligned}
$$

Divide by 3, collect $\frac{d y}{d x}$

$$
\begin{aligned}
y^{2} \frac{d y}{d x}-2 x \frac{d y}{d x} & =2 y-x^{2} \\
\left(y^{2}-2 x\right) \frac{d y}{d x} & =2 y-x^{2} \\
\frac{d y}{d x} & =\frac{2 y-x^{2}}{y^{2}-2 x}
\end{aligned}
$$

We ned the slope @ $(3,3)$. So we set $x=3$ and $y=3$

$$
m_{\text {tan }}=\frac{2 \cdot 3-3^{2}}{3^{2}-2 \cdot 3}=\frac{6-9}{9-6}=-1
$$

point $(3,3)$ and slope -1

$$
\begin{aligned}
y-3 & =-1(x-3) \\
y & =-x+3+3 \\
y & =-x+6
\end{aligned}
$$

Figure: Folium of Descartes $x^{3}+y^{3}=6 x y$

Figure: Folium of Descartes with tangent line at $(3,3)$

