Feb. 23 Math 2254H sec 015H Spring 2015

Section 10.1: Parametric Curves

Definition: We consider a path to be a curve along with an orientation-i.e. a specified direction of motion along that curve.

Definitions: t is called a parameter, the pair

$$
x=f(t), \quad y=g(t)
$$

is called a set of parametric equations, and the collection of points (x, y) is called a parametric curve.

Some Common Examples
Determine and plot the curve defined by

$$
x=\cos t, \quad y=\sin t, \quad 0 \leq t \leq 2 \pi
$$

Try to write the curve in terns of x and y wlout t. (Eliminate the parameter.)

$$
x^{2}=\cos ^{2} t \quad \text { and } \quad y^{2}=\sin ^{2} t
$$

so

$$
x^{2}+y^{2}=\cos ^{2} t+\sin ^{2} t=1
$$

$$
\text { i.e. } \quad x^{2}+y^{2}=1
$$

Circle of radius 1 centred © $(0,0)$.

When $t=0 \quad X(0)=\operatorname{Cos}(0)=1$ and $y(0)=\sin (0)=0$

$$
t=2 \pi \quad x(2 \pi)=1 \quad \text { and } \quad y(2 \pi)=0
$$

When $t=\frac{\pi}{2}$

$$
x\left(\frac{\pi}{2}\right)=0 \quad y\left(\frac{\pi}{2}\right)=1
$$

when $t=\frac{\pi}{4}$

$$
x\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \quad y\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

Some Common Examples
Determine and plot the curve defined by

$$
\begin{aligned}
& x=\sec \theta, \quad y=\tan \theta, \quad 0 \leq \theta<\frac{\pi}{2} \\
& x^{2}=\sec ^{2} \theta \quad y^{2}=\tan ^{2} \theta \quad \Rightarrow \\
& y^{2}+1=x^{2} \quad \Rightarrow \quad x^{2}-y^{2}=1
\end{aligned}
$$

hyperbola center $(0,0)$. open left/right.
when $\theta=0, \quad x=\sec 0=1 \quad y=\tan 0=0$
, For $0 \leqslant \theta<\frac{\pi}{2}, \quad x>0$ and $y \geqslant 0$

$$
\begin{aligned}
& \lim _{\theta \rightarrow \frac{\pi}{2}^{-}} x=\lim _{\theta \rightarrow \frac{\pi}{2}^{-}} \sec \theta=\infty \\
& \lim _{\theta \rightarrow \frac{\pi}{2}^{-}} y=\lim _{\theta \rightarrow \frac{\pi}{2}^{-}} \tan \theta=\infty
\end{aligned}
$$

Eliminating the Parameter
Determine and plot the parametric curve by eliminating the parameter. Indicate the direction of the curve with arrows.

$$
\begin{aligned}
& x=e^{s-1}, \quad y=e^{2 s}, \quad-\infty<s<\infty \\
& e^{2 s}=y \Rightarrow e^{s}=\sqrt{y} \Rightarrow x=\sqrt{y}-1 \\
& x=e^{s}-1 \Rightarrow e^{s}=x+1 \Rightarrow y=(x+1)^{2}
\end{aligned}
$$

parabola open upward
vertex $C(-1,0)$

$$
\text { as } s \rightarrow-\infty \quad x \rightarrow-1 \text { and } y \rightarrow 0
$$

$$
S \rightarrow \infty \quad x \rightarrow \infty \quad \text { and } \quad y \rightarrow \infty
$$

Finding a Parametrization

Find a set of parametric equations for the line segment from the point $\left(x_{0}, y_{0}\right)$ to the point $\left(x_{1}, y_{1}\right)$ with the condition that the parameter $0 \leq t \leq 1$.

If we take x and y to be lines, then

$$
x=a t+b \quad \text { and } \quad y=c t+d
$$

when $t=0 \quad x=a \cdot 0+b=x_{0} \Rightarrow b=x_{0}$

$$
y=c \cdot 0+d=y_{0} \Rightarrow d=y_{0}
$$

when $t=1, x=a \cdot 1+b=x_{1} \Rightarrow$

$$
a=x_{1}-b=x_{1}-x_{0}
$$

Similarly $\quad c=y_{1}-d=y_{1}-y_{0}$

Hence

$$
\begin{aligned}
& x=\left(x_{1}-x_{0}\right) t+x_{0} \\
& y=\left(y_{1}-y_{0}\right) t+y_{0}
\end{aligned}
$$

Section 10.2: Calculus with Parametric Curves

Figure: Even if a parametric curve can not be the graph of a function, we can still ask about the slope of a parametric curve or try to find tangent lines. We need calculus.

Slope of a Parametric Curve
Theorem: Suppose $x=f(t)$ and $y=g(t)$ where f and g are differentiable functions. Then whenever $d x / d t \neq 0$, we have

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} . \\
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t} \quad \text { If } \quad \frac{d x}{d t} \neq 0 \text {, divide } \\
\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{d y}{d x}
\end{gathered}
$$

Example
Find the equation of the line tangent to the graph of the parametric curve at the indicated parameter value.

$$
x=t-\frac{1}{t}, \quad y=1+t^{2}, \quad \text { at } \quad t=1
$$

Need a point ans a slope:
point $x(1)=1-\frac{1}{1}=0 \quad y(1)=1+1^{2}=2$
Slope $m=\left.\frac{d y}{d x}\right|_{t=1}=\left.\frac{2 t}{1+1 / t^{2}}\right|_{t=1}=\frac{2 \cdot 1}{1+1}=1$

$$
y-2=1(x-0) \quad \Rightarrow \quad y=x+2
$$

