February 23 Math 2306 sec 59 Spring 2016

Section 8: Homogeneous Equations with Constant Coefficients
We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

We seek solutions of the form $y=e^{m x}$ for constant m, and obtain the characteristic (a.k.a. auxiliary) equation

$$
a m^{2}+b m+c=0 .
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases:
I $b^{2}-4 a c>0$ and there are two distinct real roots $m_{1} \neq m_{2}$

II $b^{2}-4 a c=0$ and there is one repeated real root $m_{1}=m_{2}=m$

III $b^{2}-4 a c<0$ and there are two roots that are complex conjugates $m_{1,2}=\alpha \pm i \beta$

Case I: Two distinct real roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c>0 \\
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \quad \text { where } \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

Note that $y_{1}=e^{m_{1} x}$ and $y_{2}=e^{m_{2} x}$ form a fundamental solution set.

Example
Solve the IVP

$$
y^{\prime \prime}+y^{\prime}-12 y=0, \quad y(0)=1, \quad y^{\prime}(0)=10
$$

Characteistic egn

$$
\left.\begin{array}{rlrl}
m^{2}+m-12 & =0 \\
(m+4)(m-3) & =0 \Rightarrow & m=-4 & 2 / r^{x} \\
\text { or } & j^{2} \cdot c^{2}
\end{array}\right)
$$

$$
\begin{aligned}
& y_{1}=e^{-4 x}, y_{2}=e^{3 x} \text { genenal solution } \\
& y=c_{1} e^{-4 x}+c_{2} e^{3 x} \\
& y^{\prime}(x)=-4 c_{1} e^{-4 x}+3 c_{2} e^{3 x}
\end{aligned}
$$

$$
\begin{aligned}
& y(0)=c_{1} e^{0}+c_{2} e^{0}=1 \quad \Rightarrow \quad c_{1}+c_{2}=1 \\
& y^{\prime}(0)=-4 c_{1} e^{0}+3 c_{2} e^{0}=10 \Rightarrow-4 c_{1}+3 c_{2}=10 \\
& 4 c_{1}+4 c_{2}=4 \\
& \frac{-4 c_{1}+3 c_{2}}{}=\frac{10}{7 c_{2}}=14 \Rightarrow c_{2}=1-c_{2}=1-2=-1
\end{aligned}
$$

The solution to the IVP is

$$
y=-e^{-4 x}+2 e^{3 x}
$$

Case II: One repeated real root

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c=0 \\
y=c_{1} e^{m x}+c_{2} x e^{m x} \quad \text { where } \quad m=\frac{-b}{2 a}
\end{gathered}
$$

Use reduction of order to show that if $y_{1}=e^{\frac{-b x}{2 a}}$, then $y_{2}=x e^{\frac{-b x}{2 a}}$.

$$
y_{2}=y_{1} u \quad u=\int \frac{e^{-\int \rho(x) d x}}{\left(y_{1}\right)^{2}} d x
$$

Standard form $y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0$

$$
P(x)=\frac{b}{a}, \quad-\int \rho(x) d x=-\int \frac{b}{a} d x=-\frac{b}{a} x
$$

$$
\begin{gathered}
u=\int \frac{e^{\frac{-b}{a} x}}{\left(e^{\frac{b}{2 a} x}\right)^{2}} d x=\int \frac{e^{\frac{-b}{a} x}}{e^{-\frac{b}{a} x}} d x=\int d x \\
=x \quad \text { so } \quad y_{2}=x e^{\frac{-b}{2 a} x}
\end{gathered}
$$

Example

Solve the ODE

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Characteristic Eqn $\quad 4 n^{2}-4 m+1=0$

$$
(2 m-1)^{2}=0
$$

$m=\frac{1}{2}$ repented root

$$
y_{1}=e^{\frac{1}{2} x}, y_{2}=x e^{\frac{1}{2} x}
$$

The genera solution is

$$
y=c_{1} e^{\frac{1}{2} x}+c_{2} x e^{\frac{1}{2} x}
$$

Example
Solve the IVP

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0, \quad y(0)=4, \quad y^{\prime}(0)=0
$$

Characteristic eau

$$
\begin{aligned}
& m^{2}+6 m+9=0 \\
& (m+3)^{2}=0 \Rightarrow m=-3 \text { repeated } \\
& \text { root }
\end{aligned}
$$

$$
y_{1}=e^{-3 x}, \quad y_{2}=x e^{-3 x}
$$

General solution $y=c_{1} e^{-3 x}+c_{2} \times e^{-3 x}$

$$
y^{\prime}=-3 c_{1} e^{-3 x}+c_{2} e^{-3 x}-3 c_{2} x e^{-3 x}
$$

$$
\begin{aligned}
& y(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=4 \Rightarrow c_{1}=4 \\
& y^{\prime}(0)=-3 c_{1} e^{0}+c_{2} e^{0}-3 c_{2} \cdot 0 e^{0}=0 \quad-12+c_{2}=0 \\
& c_{2}=12
\end{aligned}
$$

The solution to the IVP is

$$
y=4 e^{-3 x}+12 x e^{-3 x}
$$

Case III: Complex conjugate roots

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad \text { where } \quad b^{2}-4 a c<0 \\
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right), \quad \text { where the roots } \\
m=\alpha \pm i \beta, \quad \alpha=\frac{-b}{2 a} \quad \text { and } \quad \beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}
\end{gathered}
$$

The solutions can be written as

$$
Y_{1}=e^{(\alpha+i \beta) x}=e^{\alpha x} e^{i \beta x}, \quad \text { and } \quad Y_{2}=e^{(\alpha-i \beta) x}=e^{\alpha x} e^{-i \beta x} .
$$

Deriving the solutions Case III
Recall Euler's Formula:

$$
\begin{gathered}
e^{i \theta}=\cos \theta+i \sin \theta \\
Y_{1}(x)=e^{\alpha x} e^{i \beta x}=e^{\alpha x}(\cos \beta x+i \sin \beta x) \\
Y_{2}(x)=e^{\alpha x} e^{-i \beta x}=e^{\alpha x}(\cos \beta x-i \sin \beta x) \\
Y_{1}=e^{\alpha x} \cos \beta x+i e^{\alpha x} \sin \beta x \\
Y_{2}=e^{\alpha x} \cos \beta x-i e^{\alpha x} \sin \beta x
\end{gathered}
$$

Let $y_{1}=\frac{1}{2}\left(Y_{1}+Y_{2}\right)=\frac{1}{2}\left(2 e^{\alpha x} \cos \beta x\right)$

$$
y_{1}=e^{\alpha x} \cos \beta x
$$

Let $y_{2}=\frac{1}{2 i}\left(Y_{1}-Y_{2}\right)=\frac{1}{2 i}\left(2 i e^{2 x} \sin \beta x\right)$

$$
y_{2}=e^{\alpha x} \sin \beta x
$$

Example
Solve the ODE

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0
$$

Charactaistic eqn $\quad m^{2}+4 m+6=0$

$$
\begin{aligned}
& m=\frac{-4 \pm \sqrt{4^{2}-4 \cdot 1 \cdot 6}}{2}=\frac{-4 \pm \sqrt{-8}}{2}=\frac{-4 \pm 2 \sqrt{2} i}{2} \\
& m=-2 \pm \sqrt{2} i \quad \alpha=-2 \quad \beta=\sqrt{2}
\end{aligned}
$$

$$
y_{1}=e^{-2 x} \cos (\sqrt{2} x), \quad y_{2}=e^{-2 x} \sin (\sqrt{2} x)
$$

Generd solution

$$
y=c_{1} e^{-2 x} \cos (\sqrt{2} x)+c_{2} e^{-2 x} \sin (\sqrt{2} x)
$$

