February 23 Math 2335 sec 51 Spring 2016

Section 4.1: Polynomial Interpolation

Interpolation is the process of finding a curve or evaluating a function whose curve passes through a known set of points.

A set of points may arise as experimenatal data, discrete measurements of objects (e.g. for computer graphics), or as solutions of a mathematical problem (e.g. numerical differential equations).

We'll consider finding a nice function passing through given points-a polynomial.

Linear Interpolation
Given two distinct (ie. $\left.x_{0} \neq x_{1}\right)$ points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$, the straight line passing through these points is

$$
P_{1}(x)=\frac{\left(x_{1}-x\right) y_{0}+\left(x-x_{0}\right) y_{1}}{x_{1}-x_{0}}
$$

Evaluate $P_{1}\left(x_{0}\right)$ and $P_{1}\left(x_{1}\right)$.

$$
\begin{aligned}
& P_{1}\left(x_{0}\right)=\frac{\left(x_{1}-x_{0}\right) y_{0}+\left(x_{0}-x_{0}\right) y_{1}}{x_{1}-x_{0}}=\frac{\left(x_{1}-x_{0}\right) y_{0}}{x_{1}-x_{0}}=y_{0} \\
& P_{1}\left(x_{1}\right)=\frac{\left(x_{1}-x_{1}\right) y_{0}+\left(x_{1}-x_{0}\right) y_{1}}{x_{1}-x_{0}}=\frac{\left(x_{1}-x_{0}\right) y_{1}}{x_{1}-x_{0}}=y_{1}
\end{aligned}
$$

Hence P_{1} passes through the pairs

$$
\left(x_{0}, y_{0}\right) \text { and }\left(x_{1}, y_{1}\right)
$$

Example
Write the equation of the line $P_{1}(x)$ through $(1,1)$ and $(4,2)$.

$$
P_{1}(x)=\frac{\left(x_{1}-x\right) y_{0}+\left(x-x_{0}\right) y_{1}}{x_{1}-x_{0}}
$$

Here $x_{0}=1 \quad x_{1}=4, \quad y_{0}=1 \quad y_{1}=2$

$$
P_{1}(x)=\frac{(4-x) \cdot 1+(x-1) \cdot 2}{4-1}=\frac{(4-x)+2(x-1)}{3}
$$

Figure: The curve $f(x)=\sqrt{x}$ together with the linear interpolation $P_{1}(x)$ through (1, 1) and (4, 2).

Using a Linear Interpolation (example)
Suppose we have a table of values for the tangent function

x	1	1.1	1.2	1.3
$\tan x$	1.5574	1.9648	2.5722	3.6021

Use a linear interpolation to approximate the value $\tan (1.15)$.
Let's take $\left(x_{0}, y_{0}\right)=(1.1,1.9648) \quad\left(x_{1}, y_{1}\right)=(1.2,2.5722)$

$$
\begin{aligned}
P_{1}(x) & =\frac{\left(x_{1}-x\right) \cdot y_{0}+\left(x-x_{0}\right) \cdot y_{1}}{x_{1}-x_{0}}= \\
& =\frac{(1.2-x) 1.9648+(x-1.1) 2.5722}{1.2-1.1}
\end{aligned}
$$

Example Continued... ${ }^{1}$

$$
\begin{aligned}
& P_{1}(x)=10(1.9648(1.2-x)+2.5722(x-1.1)) \\
&=19.648(1.2-x)+25.722(x-1.1) \\
& \tan (1.15) \approx P_{1}(1.15)=19.648(1.2-1.15)+25.722(1.15-1.1) \\
&=2.2685
\end{aligned}
$$

${ }^{1}$ The true value to four decimal places is $\tan (1.15)=2.2345$. We will consider error involved in polynomial interpolation in section 4.2

Figure: The curve $f(x)=\tan (x)$ together with the linear interpolation $P_{1}(x)$ through $(1.1,1.9648)$ and $(1.2,2.5722) . P_{1}(1.15)=2.2685$ so that $\operatorname{Err}\left(P_{1}(1.15)\right)=-0.034$ and $\operatorname{Rel}\left(P_{1}(1.15)\right)=-0.0152$.

Quadratic Interpolation

One weakness of using a linear interpolation is that it can't account for curviness. We can stick with using polynomials and allow for a graph that curves by fitting with a quadratic-or higher degree polynomial.

To get a line, we need two distinct points. To get a quadratic, we require three distinct points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

Lagrange Interpolation Basis Functions

We create our polynomial with basic building blocks. These building blocks will be simple polynomials. To motivate, let's look back at the linear interpolation:

Given two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ we had

$$
\begin{aligned}
P_{1}(x) & =\frac{\left(x_{1}-x\right) y_{0}+\left(x-x_{0}\right) y_{1}}{x_{1}-x_{0}}=y_{0}\left(\frac{x-x_{1}}{x_{0}-x_{1}}\right)+y_{1}\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right) \\
& =y_{0} L_{0}(x)+y_{1} L_{1}(x)
\end{aligned}
$$

Where $\quad L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}, \quad$ and $\quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}$.

Lagrange Interpolating Basis Functions

Consider three different x-values x_{0}, x_{1}, and x_{2}, define three polynomials

$$
\begin{aligned}
L_{0}(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
L_{1}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \\
L_{2}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

These are the Lagrange interpolating basis functions for the given x-values.

Lagrange Interpolating Basis Functions

$$
L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}
$$

Evaluate $L_{0}(x)$ at each of $x=x_{0}, x_{1}$, and x_{2}.

$$
\begin{aligned}
& L_{0}\left(x_{0}\right)=\frac{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=1 \quad L_{0}\left(x_{2}\right)= \frac{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
& L_{0}\left(x_{1}\right)=\frac{\left(x_{1}-x_{1}\right)\left(x_{1}-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=0 \quad=0
\end{aligned}
$$

Lagrange Interpolating Basis Functions

The basis functions have the following property

$$
L_{i}\left(x_{j}\right)= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

Kronecker Delta Function: is denoted by $\delta_{i j}$ (sometimes by δ_{i}^{j}) and is defined by

$$
\delta_{i j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

So we can write $L_{i}\left(x_{j}\right)=\delta_{i j}$.

Lagrange's Formula for Interpolating Polynomial

Given three distinct points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the unique quadratic polynomial passing through these points is given by

$$
P_{2}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x)
$$

where L_{0}, L_{1}, and L_{2} are the Lagrange basis functions.
This formulation (for P_{2}) is called the

Lagrange's Formula.

Lagrange's Formula for Interpolating Polynomial

$$
P_{2}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x)
$$

Use the property of the Lagrange basis functions to verify that P_{2} passes through the three points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

$$
\begin{aligned}
& P_{2}\left(x_{0}\right)=y_{0} L_{0}\left(x_{0}\right)+y_{1} L_{1}\left(x_{0}\right)+y_{2} L_{2}\left(x_{0}\right)=y_{0} \cdot 1+y_{1} \cdot 0+y_{2} \cdot 0=y_{0} \\
& P_{2}\left(x_{1}\right)=y_{0} L_{0}\left(x_{1}\right)+y_{1} L_{1}\left(x_{1}\right)+y_{2} L_{2}\left(x_{1}\right)=y_{0} \cdot 0+y_{1} \cdot 1+y_{2} \cdot 0=y_{1} \\
& P_{2}\left(x_{2}\right)=y_{0} L_{0}\left(x_{2}\right)+y_{1} L_{1}\left(x_{2}\right)+y_{2} L_{2}\left(x_{2}\right)=y_{0} \cdot 0+y_{1} \cdot 0+y_{2} \cdot 1=y_{2}
\end{aligned}
$$

Example
Find the quadratic interpolating polynomial that passes through the points $(0,-1),(1,-1)$, and $(2,7)$.

$$
\begin{aligned}
& L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{(x-1)(x-2)}{(0-1)(0-2)}=\frac{1}{2}(x-1)(x-2) \\
& L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x-x_{0}\right)\left(x_{1}-x_{2}\right)}=\frac{(x-0)(x-2)}{(1-0)(1-2)}=-x(x-2) \\
& L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{(x-0)(x-1)}{(2-0)(2-1)}=\frac{1}{2} x(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& P_{2}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x) \\
& P_{2}(x)=\frac{-1}{2}(x-1)(x-2)+x(x-2)+\frac{7}{2} x(x-1)
\end{aligned}
$$

This simplifies to

$$
P_{2}(x)=4 x^{2}-4 x-1
$$

Figure: The points $(0,-1),(1,-1)$, and $(2,7)$ together with the interpolating polynomial P_{2}.

Uniqueness of the Interpolating Polynomial
Question: For the three points, could there be two or more quadratics that pass through them? If so, how can we know we've found the right one?

Suppose that two quadratics $P_{2}(x)$ and $Q_{2}(x)$ both pass through $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Determine what must be true about the (at most) quadratic $R(x)=P_{2}(x)-Q_{2}(x)$.

$$
\begin{aligned}
& P_{2}(x)=a_{2} x^{2}+a_{1} x+a_{0} \quad Q_{2}(x)=b_{2} x^{2}+b_{1} x+b_{0} \\
& R(x)=\left(a_{2}-b_{2}\right) x^{2}+\left(a_{1}-b_{1}\right) x+\left(a_{0}-b_{0}\right) \quad \text { Degree } 2 \text { at most! } \\
& L_{\text {gook }} \text { \& } R\left(x_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& R\left(x_{0}\right)=P_{2}\left(x_{0}\right)-Q_{2}\left(x_{0}\right)=y_{0}-y_{0}=0 \\
& R\left(x_{1}\right)=P_{2}\left(x_{1}\right)-Q_{2}\left(x_{1}\right)=y_{1}-y_{1}=0 \\
& R\left(x_{2}\right)=P_{2}\left(x_{2}\right)-Q_{2}\left(x_{2}\right)=y_{2}-y_{2}=0
\end{aligned}
$$

A quadratic cont have three red roots.

So $R(x)=0$ (the zeno function).

Thus $P_{2}(x)=Q_{2}(x)$.

Using a Quadratic Interpolation (example)
Suppose we have a table of values for the tangent function

		x_{0}	x_{1}	x_{2}
x	1	1.1	1.2	1.3
$\tan x$	1.5574	1.9648	2.5722	3.6021

Use a quadratic interpolation to approximate the value $\tan (1.15)$. (Use 1.1, 1.2 and 1.3)

$$
\begin{aligned}
& L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{(x-1.2)(x-1.3)}{(1.1-1.2)(1.1-1.3)}=50(x-1.2)(x-1.3) \\
& L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=\frac{(x-1.1)(x-1.3)}{(1.2-1.1)(1.2-1.3)}=-100(x-1.1)(x-1.3)
\end{aligned}
$$

$$
\begin{aligned}
& L_{2}(x)= \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{(x-1.1)(x-1.2)}{(1.3-1.1)(1.3-1.2)}=50(x-1.1)(x-1.2) \\
& \begin{aligned}
P_{2}(x)= & y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x) \\
= & 1.9648(50)(x-1.2)(x-1.3)-257.22(x-1.1)(x-1.3) \\
& \quad+3.6021(50)(x-1.1)(x-1.2)
\end{aligned}
\end{aligned}
$$

Example Continued...²

$$
\tan (1.15) \approx P_{2}(1.15) \doteq 2.2157
$$

${ }^{2}$ Recall that the true value to four decimal places is $\tan (1.15)=2.2345$.

Figure: The curve $f(x)=\tan (x)$ together with the quadratic interpolation $P_{2}(x)$ through (1.1, 1.9648), (1.2, 2.5722), and (1.3, 3.6021). $P_{2}(1.15)=2.2157$ so that $\operatorname{Err}\left(P_{2}(1.15)\right)=0.0188$ and $\operatorname{Rel}\left(P_{2}(1.15)\right)=0.0084$.

Higher Degree Interpolation: Lagrange's Formula

Suppose we have $n+1$ distinct points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. We define the $n+1$ Lagrange interpolation basis functions $L_{0}, L_{1}, \ldots, L_{n}$ by

$$
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)}
$$

for $i=0, \ldots, n$.

$$
L_{i}(x)=\prod_{j=0, j \neq i}^{n} \frac{\left(x-x_{j}\right)}{\left(x_{i}-x_{j}\right)} \quad \frac{x-x_{j}}{x_{i}-x_{j}}
$$

Lagrange's Formula The unique polynomial of degree $\leq n$ passing through these $n+1$ points is

$$
P_{n}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+\cdots+y_{n} L_{n}(x) .
$$

Example
Find the polynomial of degree at most three that passes through the points $(-1,5),(0,3),(1,1)$, and $(2,11)$.

$$
\begin{gathered}
x_{0} \quad x_{1} x_{2} \\
L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}=\frac{(x-0)(x-1)(x-2)}{(-1-0)(-1-1)(-1-2)}=-\frac{1}{6} x(x-1)(x-2) \\
L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{1}-x_{0}\right)\left(x-x_{2}\right)\left(x_{1}-x_{3}\right)}=\frac{(x+1)(x-1)(x-2)}{(1)(0-1)(0-2)}=\frac{1}{2}(x+1)(x-1)(x-2) \\
L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)}=\frac{(x+1)(x-0)(x-2)}{(1+1)(1-0)(1-2)}=\frac{-1}{2}(x+1) x(x-2)
\end{gathered}
$$

$$
L_{3}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)}=\frac{(x+1)(x-0)(x-1)}{(2+1)(2-0)(2-1)}=\frac{1}{6}(x+1) x(x-1)
$$

$$
\begin{aligned}
& P_{3}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x)+y_{3} L_{3}(x) \\
& P_{3}(x)=\frac{-5}{6} x(x-1)(x-2)+\frac{3}{2}(x+1)(x-1)(x-2)-\frac{1}{2}(x+1) x(x-2) \\
& \quad+\frac{11}{6}(x+1) x(x-1)
\end{aligned}
$$

This simplifies to

$$
P_{3}(x)=2 x^{3}-4 x+3
$$

Figure: The points $(-1,5),(0,3),(1,1)$, and $(2,11)$ together with the interpolating polynomial P_{3}.

Newton Divided Differences

The quadratic interpolating polynomial for the set of data $(-1,5)$, $(1,1),(2,11)$ is

$$
P_{2}(x)=4 x^{2}-2 x-1
$$

The cubic interpolating polynomial for the set of data $(-1,5),(0,3)$, $(1,1),(2,11)$ is

$$
P_{3}(x)=2 x^{3}-4 x+3
$$

Note that the second set of data is the same as the first with a single additional point included. However, there is no clear connection between the two interpolating polynomials P_{2} and $P_{3}{ }^{3}$.

[^0]
[^0]: ${ }^{3}$ Both were obtained by using the Lagrange interpolating basis functions from scratch.

