February 23 Math 2335 sec 51 Spring 2016

Section 4.1: Polynomial Interpolation

Interpolation is the process of finding a curve or evaluating a function whose curve passes through a known set of points.

A set of points may arise as experimenatal data, discrete measurements of objects (e.g. for computer graphics), or as solutions of a mathematical problem (e.g. numerical differential equations).

We'll consider finding a *nice* function passing through given points—a polynomial.

Linear Interpolation

Given two distinct (i.e. $x_0 \neq x_1$) points (x_0, y_0) and (x_1, y_1) , the straight line passing through these points is

$$P_1(x) = \frac{(x_1 - x)y_0 + (x - x_0)y_1}{x_1 - x_0}$$

Evaluate $P_1(x_0)$ and $P_1(x_1)$.

$$P_{1}(x_{0}) = \frac{(x_{1} - x_{0}) y_{0} + (x_{0} - x_{0}) y_{1}}{x_{1} - x_{0}} = \frac{(x_{1} - x_{0}) y_{0}}{x_{1} - x_{0}} = y_{0}$$

$$P_{1}(x_{1}) = \frac{(x_{1} - x_{1})y_{0} + (x_{1} - x_{0})y_{1}}{x_{1} - x_{0}} = \frac{(x_{1} - x_{0})y_{1}}{x_{1} - x_{0}} = y_{1}$$

February 18, 2016 2 / 65

イロト 不得 トイヨト イヨト 二日

Hence P, passes through the poirs (Xo, yo) and (X, y,).

Example

Write the equation of the line $P_1(x)$ through (1, 1) and (4, 2).

$$P_{1}(x) = (x_{1} - x)y_{0} + (x - x_{0})y_{1}$$

Here
$$x_{i} = 1$$
 $x_{i} = 4$, $y_{D} = 1$ $y_{i} = 2$
 $P_{i}(x) = \frac{(4-x) \cdot 1 + (x-1) \cdot 2}{4-1} = \frac{(4-x) + 2(x-1)}{3}$

February 18, 2016 4 / 65

イロト イポト イヨト イヨト 三日

Figure: The curve $f(x) = \sqrt{x}$ together with the linear interpolation $P_1(x)$ through (1, 1) and (4, 2).

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Using a Linear Interpolation (example)

Suppose we have a table of values for the tangent function

Use a linear interpolation to approximate the value tan(1.15).

Let's take
$$(x_{0}, y_{0}) = (1.1, 1.9648)$$
 $(x_{1}, y_{1}) = (1.2, 2.5722)$
 $P_{1}(x) = \frac{(x_{1} - x) \cdot y_{0} + (x - x_{0}) \cdot y_{1}}{x_{1} - x_{0}} =$
 $= \frac{(1.2 - x) 1.9648 + (x - 1.1) 2.5722}{1.2 - 1.1}$

Example Continued...¹

 $t_{\alpha}(1.15) \approx P_1(1.15) = 19.648(1.2 - 1.15) + 25.722(1.15 - 1.1)$

- 2.2685

¹The true value to four decimal places is tan(1.15) = 2.2345. We will consider error involved in polynomial interpolation in section 4.2

Figure: The curve $f(x) = \tan(x)$ together with the linear interpolation $P_1(x)$ through (1.1, 1.9648) and (1.2, 2.5722). $P_1(1.15) = 2.2685$ so that $Err(P_1(1.15)) = -0.034$ and $Rel(P_1(1.15)) = -0.0152$.

Quadratic Interpolation

One weakness of using a linear interpolation is that it can't account for *curviness*. We can stick with using polynomials and allow for a graph that curves by fitting with a quadratic—or higher degree polynomial.

To get a line, we need two distinct points. To get a quadratic, we require three distinct points (x_0, y_0) , (x_1, y_1) and (x_2, y_2) .

Lagrange Interpolation Basis Functions

We create our polynomial with basic building blocks. These building blocks will be simple polynomials. To motivate, let's look back at the linear interpolation:

Given two points (x_0, y_0) and (x_1, y_1) we had

$$P_{1}(x) = \frac{(x_{1} - x)y_{0} + (x - x_{0})y_{1}}{x_{1} - x_{0}} = y_{0}\left(\frac{x - x_{1}}{x_{0} - x_{1}}\right) + y_{1}\left(\frac{x - x_{0}}{x_{1} - x_{0}}\right)$$
$$= y_{0}L_{0}(x) + y_{1}L_{1}(x)$$
Where $L_{0}(x) = \frac{x - x_{1}}{x_{0} - x_{1}}$, and $L_{1}(x) = \frac{x - x_{0}}{x_{1} - x_{0}}$.

Lagrange Interpolating Basis Functions

Consider three different *x*-values x_0 , x_1 , and x_2 , define three polynomials

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$
$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}$$
$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

These are the *Lagrange interpolating basis functions* for the given *x*-values.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

February 18, 2016 12 / 65

Lagrange Interpolating Basis Functions

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)}$$

Evaluate $L_0(x)$ at each of $x = x_0, x_1$, and x_2 .

$$L_{o}(x_{b}) = \frac{(x_{o} - x_{1})(x_{o} - x_{2})}{(x_{o} - x_{1})(x_{b} - x_{2})} = 1 \qquad L_{o}(x_{2}) = \frac{(x_{2} - x_{1})(x_{2} - x_{2})}{(x_{o} - x_{1})(x_{v} - x_{2})}$$

$$L_{o}(x_{1}) = \frac{(x_{1} - x_{1})(x_{1} - x_{2})}{(x_{o} - x_{1})(x_{v} - x_{2})} = 0 \qquad = 0$$

February 18, 2016 13 / 65

Lagrange Interpolating Basis Functions

The basis functions have the following property

$$L_i(x_j) = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

Kronecker Delta Function: is denoted by δ_{ij} (sometimes by δ_i^j) and is defined by

$$\delta_{ij} = \begin{cases} 0, & i \neq j \\ 1, & i = j \end{cases}$$

February 18, 2016

14/65

So we can write $L_i(x_j) = \delta_{ij}$.

Lagrange's Formula for Interpolating Polynomial

Given three distinct points (x_0, y_0) , (x_1, y_1) and (x_2, y_2) , the unique quadratic polynomial passing through these points is given by

$$P_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

where L_0 , L_1 , and L_2 are the Lagrange basis functions.

This formulation (for P_2) is called the

Lagrange's Formula.

February 18, 2016

Lagrange's Formula for Interpolating Polynomial

$$P_2(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

Use the property of the Lagrange basis functions to verify that P_2 passes through the three points (x_0, y_0) , (x_1, y_1) and (x_2, y_2) .

$$P_{2}(x_{0}) = y_{0}L_{0}(x_{0}) + y_{1}L_{1}(x_{0}) + y_{2}L_{2}(x_{0}) = y_{0}\cdot 1 + y_{1}\cdot 0 + y_{2}\cdot 0 = y_{0}$$

$$P_{2}(x_{1}) = y_{0}L_{0}(x_{1}) + y_{1}L_{1}(x_{1}) + y_{2}L_{2}(x_{1}) = y_{0}\cdot 0 + y_{1}\cdot 1 + y_{2}\cdot 0 = y_{1}$$

$$P_{2}(x_{2}) = y_{0}L_{0}(x_{2}) + y_{1}L_{1}(x_{2}) + y_{2}L_{2}(x_{2}) = y_{0}\cdot 0 + y_{1}\cdot 0 + y_{2}\cdot 1 = y_{2}$$

February 18, 2016

Example

Find the quadratic interpolating polynomial that passes through the points (0, -1), (1, -1), and (2, 7).

$$L_{o}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} = \frac{(x - 1)(x - 2)}{(0 - 1)(0 - 2)} = \frac{1}{2}(x - 1)(x - 2)$$

$$L_{1}(x) = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} = \frac{(x - 0)(x - 2)}{(1 - 0)(1 - 2)} = -x(x - 2)$$

$$L_{2}(x) = \frac{(x-x_{0})(x-X_{1})}{(x_{2}-x_{0})(x_{2}-X_{1})} = \frac{(x-0)(x-1)}{(z-0)(z-1)} = \frac{1}{2} \chi(x-1)$$

February 18, 2016 17 / 65

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$P_{2}(x) = y_{0}L_{0}(x) + y_{1}L_{1}(x) + y_{2}L_{2}(x)$$

$$P_{2}(x) = \frac{-1}{2}(x-1)(x-2) + x(x-2) + \frac{7}{2}x(x-1)$$

February 18, 2016 18 / 65

・ロト・西ト・モン・モー シック

Figure: The points (0, -1), (1, -1), and (2, 7) together with the interpolating polynomial P_2 .

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

✓ ■ > < ■ >
February 18, 2016

Uniqueness of the Interpolating Polynomial

Question: For the three points, could there be two or more quadratics that pass through them? If so, how can we know we've found the *right* one?

Suppose that two quadratics $P_2(x)$ and $Q_2(x)$ both pass through $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) . Determine what must be true about the (at most) quadratic $R(x) = P_2(x) - Q_2(x)$.

$$P_{2}(x) = a_{2}x^{2} + a_{1}x + a_{0} \qquad Q_{2}(x) = b_{2}x^{2} + b_{1}x + b_{0}$$

$$R(x) = (a_{2} - b_{2})x^{2} + (a_{1} - b_{1})x + (a_{0} - b_{0}) \qquad Degree 2 \ at most!$$

$$Look \ e \ R(x_{i}^{-})$$

February 18, 2016

$$\begin{split} & R(x_{0}) = P_{z}(x_{0}) - Q_{z}(x_{0}) = y_{0} - y_{0} = 0 \\ & R(x_{1}) = P_{z}(x_{1}) - Q_{z}(x_{1}) = y_{1} - y_{1} = 0 \\ & R(x_{2}) = P_{z}(x_{2}) - Q_{z}(x_{2}) = y_{2} - y_{2} = 0 \\ & A \ quadrat.c \ cont have \ three \ real \ roots. \\ & S_{0} \quad R(x) = 0 \qquad (the \ 3eno \ function), \\ & Thus \quad P_{z}(x) = Q_{z}(x) = Q_{z}(x) . \end{split}$$

February 18, 2016 23 / 65

・ロト・西ト・ヨト・ヨー うへの

Using a Quadratic Interpolation (example)

Use a quadratic interpolation to approximate the value tan(1.15). (Use 1.1, 1.2 and 1.3)

$$L_{0}(x) = \frac{(x - x_{1})(x - x_{2})}{(x_{0} - x_{1})(x_{0} - x_{2})} = \frac{(x - 1 \cdot 2)(x - 1 \cdot 3)}{(1 \cdot 1 - 1 \cdot 2)(1 \cdot 1 - 1 \cdot 3)} = 50(x - 1 \cdot 2)(x - 1 \cdot 3)$$

$$L_{1}(x) = \frac{(x - x_{0})(x - x_{2})}{(x_{1} - x_{0})(x_{1} - x_{2})} = \frac{(x - 1 \cdot 1)(x - 1 \cdot 3)}{(1 \cdot 2 - 1 \cdot 1)(1 \cdot 2 - 1 \cdot 3)} = -100(x - 1 \cdot 1)(x - 1 \cdot 3)$$

February 18, 2016

$$L_{2}(x) = \frac{(x - x_{0})(x - x_{1})}{(x_{2} - x_{0})(x_{1} - x_{1})} = \frac{(x - 1 \cdot 1)(x - 1 \cdot 2)}{(1 \cdot 3 - 1 \cdot 1)(1 \cdot 3 - 1 \cdot 2)} = So(x - 1 \cdot 1)(x - 1 \cdot 2)$$

February 18, 2016 26 / 65

・ロト・西ト・ヨト・ヨー うへの

Example Continued...²

$t_{an}(1.15) \approx P_2(1.15) = 2.2157$

²Recall that the true value to four decimal places is tan(1.15) = 2.2345. = → <

Figure: The curve $f(x) = \tan(x)$ together with the quadratic interpolation $P_2(x)$ through (1.1, 1.9648), (1.2, 2.5722), and (1.3, 3.6021). $P_2(1.15) = 2.2157$ so that $\text{Err}(P_2(1.15)) = 0.0188$ and $\text{Rel}(P_2(1.15)) = 0.0084$.

February 18, 2016

Higher Degree Interpolation: Lagrange's Formula

Suppose we have n + 1 distinct points $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$. We define the n + 1 Lagrange interpolation basis functions L_0, L_1, \dots, L_n by

Lagrange's Formula The unique polynomial of degree $\leq n$ passing through these n + 1 points is

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \cdots + y_n L_n(x).$$

February 18, 2016

Example

Find the polynomial of degree at most three that passes through the points (-1,5), (0,3), (1,1), and (2,11).

Xa

Χυ ^Χι Χ_ι

$$L_{0}(x) = \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} = \frac{(x - 0)(x - 1)(x - 2)}{(-1 - 0)(-1 - 1)(-1 - 2)} = -\frac{1}{6} \times (x - 1)(x - 2)$$

$$L_{1}(x) = \frac{(x-x_{0})(x-x_{2})(x-x_{3})}{(x_{1}-x_{0})(x_{1}-x_{3})(x_{1}-x_{3})} = \frac{(x+1)(x-1)(x-2)}{(1)(0-1)(0-2)} = \frac{1}{2}(x+1)(x-1)(x-2)$$

$$L_{2}(x) = \frac{(x-x_{0})(x-x_{1})(x-x_{3})}{(x_{2}-x_{0})(x_{2}-x_{1})(x_{2}-x_{3})} = \frac{(x+1)(x-0)(x-1)}{(1+1)(1-0)(1-2)} = \frac{-1}{2}(x+1)x(x-2)$$

February 18, 2016 32 / 65

$$L_{3}(x) = \frac{(x-x_{0})(x-x_{1})(x-x_{2})}{(x_{3}-x_{0})(x_{3}-x_{1})(x_{3}-x_{2})} = \frac{(x+1)(x-0)(x-1)}{(x+1)(x-0)(x-1)} = \frac{1}{6}(x+1)x(x-1)$$

$$P_{3}(x) = y_{0}L_{0}(x) + y_{1}L_{1}(x) + y_{2}L_{2}(x) + y_{3}L_{3}(x)$$

$$P_{3}(x) = \frac{-5}{6} \times (x-1)(x-2) + \frac{3}{2} (x+1)(x-1)(x-2) - \frac{1}{2} (x+1) \times (x-2)$$

$$+ \frac{11}{6}(x+1)x(x-1)$$

February 18, 2016 33 / 65

・ロト・西ト・ヨト・ヨー うへの

This simplifies to

$$P_3(x) = 2x^3 - 4x + 3$$

Figure: The points (-1,5), (0,3), (1,1), and (2,11) together with the interpolating polynomial P_3 .

ъ

Newton Divided Differences

The quadratic interpolating polynomial for the set of data (-1,5), (1,1), (2,11) is

$$P_2(x) = 4x^2 - 2x - 1.$$

The cubic interpolating polynomial for the set of data (-1,5), (0,3), (1,1), (2,11) is

$$P_3(x) = 2x^3 - 4x + 3.$$

Note that the second set of data is the same as the first with a single additional point included. However, there is no clear connection between the two interpolating polynomials P_2 and P_3 ³.

³Both were obtained by using the Lagrange interpolating basis functions from scratch. $(\Box \mapsto (\Box) \to ($