Feb. 24 Math 2254H sec 015H Spring 2015

Section 10.2: Calculus with Parametric Curves

Slope of a Parametric Curve

Theorem: Suppose $x=f(t)$ and $y=g(t)$ where f and g are differentiable functions. Then whenever $d x / d t \neq 0$, we have

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} .
$$

Example
Consider the parametric equations

$$
x=t^{2}, \quad y=t^{3}-3 t
$$

(a) Determine the point(s) on the curve where the tangent line is horizontal.
(b) Show that the curve has two different tangent lines at the point $(3,0)$ and find their equations.

$$
\frac{d y}{d x}=\frac{d y \mid d t}{d x / d t}=\frac{3 t^{2}-3}{2 t}=\frac{3\left(t^{2}-1\right)}{2 t}
$$

$$
\frac{d y}{d x}=0 \Rightarrow t^{2}-1=0 \Rightarrow t=1 \text { or } t=-1
$$

when $t=1, x=1 \quad y=1-3=-2$
a) $(1,2)$ and

$$
t=-1, \quad x=1 \quad y=-1+3=2
$$

$(1,-2)$

February 23, 2015

$$
x=t^{2} \quad y=t^{3}-3 t
$$

b) If $x=3, t^{2}=3 \Rightarrow t=\sqrt{3}$ or $t=-\sqrt{3}$

$$
\text { If } y=0, \quad t^{3}-3 t=0 \Rightarrow t\left(t^{2}-3\right)=0
$$

$$
t=0, \quad t=\sqrt{3} \text { or } t=-\sqrt{3}
$$

$(x, y)=(3,0)$ when $t=\sqrt{3}$ and $t=-\sqrt{3}$.

$$
\frac{d y}{d x}=\frac{3\left(t^{2}-1\right)}{2 t}
$$

Slopes.

$$
\begin{aligned}
& m_{1}=\left.\frac{d y}{d x}\right|_{t=\sqrt{3}}=\frac{3(3-1)}{2 \sqrt{3}}=\frac{3}{\sqrt{3}}=\sqrt{3} \\
& m_{2}=\left.\frac{d y}{d x}\right|_{t=-\sqrt{3}}=\frac{3(3-1)}{-2 \sqrt{3}}=-\sqrt{3}
\end{aligned}
$$

2 lines:

$$
\begin{aligned}
& y-0=\sqrt{3}(x-3) \\
& y=\sqrt{3} x-3 \sqrt{3} \\
& y-0=-\sqrt{3}(x-3) \\
& y=-\sqrt{3} x+3 \sqrt{3}
\end{aligned}
$$

Graph of $x=t^{2}, y=t^{3}-3 t$

Figure: $x=t^{2}, y=t^{3}-3 t,-2 \leq t \leq 2$

The Second Derivative

Observation: Taking a derivative of y with respect to x amounts to taking a derivative of y with respect to t, and dividing this by $d x / d t$.

Theorem: If $x=f(t), y=g(t)$ with f and g sufficiently differentiable and $f^{\prime}(t) \neq 0$

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}} .
$$

CAUTION: $\frac{d^{2} y}{d x^{2}}$ is not equal to $\frac{d^{2} y}{d t^{2}}$ divided by $\frac{d^{2} x}{d t^{2}}$.

Example
Determine $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$. And find the values of the parameter θ for which the parametric curve would be concave upward.

$$
\begin{aligned}
& x=\cos 2 \theta, \quad y=\cos \theta, \quad 0<\theta<\pi \\
& \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{-\sin \theta}{-2 \sin 2 \theta}=\frac{\sin \theta}{2 \sin 2 \theta}=\frac{\sin \theta}{4 \sin \theta \cos \theta} \\
&= \frac{1}{4 \cos \theta}=\frac{1}{4} \sec \theta \\
& \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d \theta}\left(\frac{d y}{d x}\right)}{\frac{d x}{d \theta}}=\frac{\frac{1}{4} \sec \theta \tan \theta}{-2 \sin 2 \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{8} \frac{\sec \theta \tan \theta}{2 \sin \theta \cos \theta}=\frac{-1}{16} \frac{1}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\sin \theta \cos \theta} \\
& =\frac{-1}{16} \frac{1}{\cos ^{3} \theta}=\frac{-1}{16} \sec ^{3} \theta \\
\frac{d^{2} y}{d x^{2}} & =\frac{-1}{16} \sec ^{3} \theta
\end{aligned}
$$

The curve is concave up if $\frac{\pi}{2}<\theta<\pi \quad$ (where $\sec \theta<0$)

Area Under a Curve

The area bounded between the x-axis and the continuous curve $y=F(x)$ over the interval $[a, b]$ is known to be

$$
\text { Area }=\int_{a}^{b}|y| d x=\int_{a}^{b}|F(x)| d x
$$

If the curve is traced once by the parametric equations $x=f(t)$, $y=g(t)$ for $\alpha \leq t \leq \beta$, then by substitution

$$
\text { Area }=\int_{a}^{b}|y| d x=\int_{\alpha}^{\beta}\left|g(t) f^{\prime}(t)\right| d t
$$

Example
Find the area enclosed in an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. Note that the ellipse can be parameterized by

$$
x=a \cos \theta, \quad y=b \sin \theta, \quad 0 \leq \theta \leq 2 \pi
$$

Note $\frac{x}{a}=\cos \theta, \frac{b}{b}=\sin \theta$

quarter of ellipse is mapped out for

$$
0 \leqslant \theta \leq \frac{\pi}{2}
$$

$$
\frac{1}{4} A=\int_{0^{\prime \prime}}^{\theta^{=}} y d x=\int_{0}^{\pi / 2} b \sin \theta|-a \sin \theta| d \theta
$$

$$
\begin{aligned}
\Rightarrow A & =4 a b \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta \\
& =4 a b \int_{0}^{\pi / 2}\left(\frac{1}{2}-\frac{1}{2} \cos 2 \theta\right) d \theta \\
& =2 a b \int_{0}^{\pi / 2}(1-\cos 2 \theta) d \theta \\
& =2 a b\left[\theta-\left.\frac{1}{2} \sin 2 \theta\right|_{0} ^{\pi / 2}\right. \\
& =2 a b\left[\frac{\pi}{2}-\frac{1}{2} \sin \pi-\left(0-\frac{1}{2} \sin (0)\right)\right]
\end{aligned}
$$

$$
\Rightarrow A=2 a b\left(\frac{\pi}{2}\right)=\pi a b
$$

