Feb. 24 Math 2254H sec 015H Spring 2015

Section 10.2: Calculus with Parametric Curves

Slope of a Parametric Curve

Theorem: Suppose x = f(t) and y = g(t) where f and g are
differentiable functions. Then whenever dx/dt # 0, we have
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Example
Consider the parametric equations

x=1t, y=t-3t

(a) Determine the point(s) on the curve where the tangent line is
horizontal.

(b) Show that the curve has two different tangent lines at the point
(8,0) and find their equations.
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Graphof x =12, y =13 — 3t

24

Figure: x =12,y =13 - 3t,-2<t<2
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The Second Derivative
Observation: Taking a derivative of y with respect to x amounts to
taking a derivative of y with respect to t, and dividing this by dx/dt.

Theorem: If x = f(t), y = g(t) with f and g sufficiently differentiable
and f'(t) #0

oy d <dy> _ %(Zﬁ).

dx2 ~ dx \dx %

CAUTION: 2 is not equal to dt2 Y divided by ¢ dt2'
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Example

Determine % and %. And find the values of the parameter 6 for
which the parametric curve would be concave upward.

xX=c0s820, y=cosf, 0O0<O<m
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Area Under a Curve

The area bounded between the x-axis and the continuous curve
y = F(x) over the interval [a, b] is known to be

b b
Area_/ ly| dx_/ |F(x)| dx.
a a

If the curve is traced once by the parametric equations x = f(t),
y = g(t) for a < t < 33, then by substitution

b B
Area:/ |y|dx:/ 9(OF(1)] dt
a «
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Example

Find the area enclosed in an ellipse ’;—2 + ty)—z = 1. Note that the ellipse
can be parameterized by

x =acosf, y=bsing, 0<6<2nr
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