
Feb. 24 Math 2254H sec 015H Spring 2015

Section 10.2: Calculus with Parametric Curves

Slope of a Parametric Curve

Theorem: Suppose x = f (t) and y = g(t) where f and g are
differentiable functions. Then whenever dx/dt 6= 0, we have

dy
dx

=
dy
dt
dx
dt

.
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Example
Consider the parametric equations

x = t2, y = t3 − 3t .

(a) Determine the point(s) on the curve where the tangent line is
horizontal.

(b) Show that the curve has two different tangent lines at the point
(3,0) and find their equations.
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Graph of x = t2, y = t3 − 3t

Figure: x = t2, y = t3 − 3t , −2 ≤ t ≤ 2
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The Second Derivative

Observation: Taking a derivative of y with respect to x amounts to
taking a derivative of y with respect to t , and dividing this by dx/dt .

Theorem: If x = f (t), y = g(t) with f and g sufficiently differentiable
and f ′(t) 6= 0

d2y
dx2 =

d
dx

(
dy
dx

)
=

d
dt

(
dy
dx

)
dx
dt

.

CAUTION: d2y
dx2 is not equal to d2y

dt2 divided by d2x
dt2 .
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Example

Determine dy
dx and d2y

dx2 . And find the values of the parameter θ for
which the parametric curve would be concave upward.

x = cos 2θ, y = cos θ, 0 < θ < π
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Area Under a Curve

The area bounded between the x-axis and the continuous curve
y = F (x) over the interval [a,b] is known to be

Area =

∫ b

a
|y |dx =

∫ b

a
|F (x)|dx .

If the curve is traced once by the parametric equations x = f (t),
y = g(t) for α ≤ t ≤ β, then by substitution

Area =

∫ b

a
|y |dx =

∫ β

α
|g(t)f ′(t)|dt
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Example
Find the area enclosed in an ellipse x2

a2 + y2

b2 = 1. Note that the ellipse
can be parameterized by

x = a cos θ, y = b sin θ, 0 ≤ θ ≤ 2π
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