February 24 Math 3260 sec. 55 Spring 2020

Section 3.1: Introduction to Determinants

If A is an $n \times n$ matrix, we defined the determinant of A, $\operatorname{denoted} \operatorname{det}(A)$ or $|A|$.

- If $n=2$, det $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} a_{22}-a_{21} a_{12}$.
- If $n>2$, letting $C_{i j}$ denote the $i, j{ }^{\text {th }}$ cofactor of A

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} C_{i j} \quad \text { where } i \text { is fixed }
$$

equivalently

$$
\operatorname{det}(A)=\sum_{i=1}^{n} a_{i j} C_{i j} \quad \text { where } j \text { is fixed }
$$

A 4×4 Example
Evaluate $\operatorname{det}(A)$ where $A=\left[\begin{array}{rrrr}0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2\end{array}\right]$
we can do a cofactor expansion doun column 1 .

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11}^{10} C_{11}+a_{21} C_{21}+a_{31}^{=0} C_{31}+a_{41} C_{41} \\
& =a_{21} C_{21}+a_{41} C_{41}
\end{aligned}
$$

C_{21} and C_{41}

$$
\begin{aligned}
C_{21} & =(-1)^{2+1} \operatorname{det}\left(\left[\begin{array}{rrr}
1 & 2 & -1 \\
3 & 6 & 2 \\
-5 & 4 & -2
\end{array}\right]\right) \\
& =(-1)^{3}\left(1\left|\begin{array}{rr}
6 & 2 \\
4 & -2
\end{array}\right|-2\left|\begin{array}{cc}
3 & 2 \\
-5 & -2
\end{array}\right|+(-1)\left|\begin{array}{cc}
3 & 6 \\
-5 & 4
\end{array}\right|\right) \\
& =-1(-12-8-2(-6+10)-(12+30)) \\
& =-(-20-8-42)=70
\end{aligned}
$$

C_{21} and C_{41}

$$
\begin{aligned}
C_{41} & =(-1)^{4+1} \operatorname{det}\left(\left[\begin{array}{rrr}
1 & 2 & -1 \\
5 & -7 & 3 \\
3 & 6 & 2
\end{array}\right]\right) \\
& =(-1)^{5}\left(2\left|\begin{array}{rr}
-7 & 3 \\
6 & 2
\end{array}\right|-2\left|\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right|+(-1)\left|\begin{array}{cc}
5 & -7 \\
3 & 6
\end{array}\right|\right) \\
& =-7(-14-18-2(10-9)-(30+21)) \\
& =-(-32-2-51)=85
\end{aligned}
$$

A 4×4 Example

$$
\begin{gathered}
\operatorname{det}\left(\left[\begin{array}{rrrr}
0 & 1 & 2 & -1 \\
2 & 5 & -7 & 3 \\
0 & 3 & 6 & 2 \\
-2 & -5 & 4 & -2
\end{array}\right]\right)=a_{21} C_{21}+a_{41} C_{41} \\
=2(70)+(-2)(85) \\
=2(-15)=-30
\end{gathered}
$$

Triangular Matrices

Definition:

The $n \times n$ matrix $A=\left[a_{i j}\right]$ is said to be upper triangular if $a_{i j}=0$ for all $i>j$. It is said to be lower triangular if $a_{i j}=0$ for all $j>i$. A matrix that is both upper and lower triangular is diagonal.

Theorem: For $n \geq 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries. (i.e. if $A=\left[a_{i j}\right]$ is triangular, then $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$.)

Example

$$
A=\left[\begin{array}{rrrrr}
-1 & 3 & 4 & 0 & 2 \\
0 & 2 & -3 & 0 & -4 \\
0 & 0 & 3 & 7 & 5 \\
0 & 0 & 0 & -4 & 6 \\
0 & 0 & 0 & 0 & 6
\end{array}\right] \quad \begin{aligned}
\text { uper }
\end{aligned} \quad \begin{aligned}
\operatorname{det}(A) & =(-1)(2)(3)(-4)(6) \\
& =144
\end{aligned}
$$

$$
A=\left[\begin{array}{rrrr}
7 & 0 & 0 & 0 \\
3 & 6 & 0 & 0 \\
0 & -1 & 2 & 0 \\
4 & 2 & 2 & 2
\end{array}\right] \quad \begin{aligned}
\operatorname{lover}(A) & =7(6)(2)(2) \\
& =42(1)=168
\end{aligned}
$$

Section 3.2: Properties of Determinants

Theorem: Let A be an $n \times n$ matrix, and suppose the matrix B is obtained from A by performing a single elementary row operation ${ }^{1}$. Then
(i) If B is obtained by adding a multiple of a row of A to another row of A (row replacement), then

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

(ii) If B is obtained from A by swapping any pair of rows (row swap), then

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

(iii) If B is obtained from A by scaling any row by the constant k (scaling), then

$$
\operatorname{det}(B)=k \operatorname{det}(A)
$$

[^0]Example: Compute the Determinant
$\left\lvert\, \begin{array}{rrrr}0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2\end{array} \quad B\right.$ is upper triangular and obtained by doing row ops to A.

Changes to let

$$
\left[\begin{array}{cccc}
-2 & -5 & 4 & -2 \tag{-1}\\
2 & 5 & -7 & 3 \\
0 & 3 & 6 & 2 \\
0 & 1 & 2 & -1
\end{array}\right]
$$

$$
R_{1} \leftrightarrow R_{4}
$$

$$
\begin{align*}
& {\left[\begin{array}{cccc}
-2 & -5 & 4 & -2 \\
0 & 0 & -3 & 1 \\
0 & 3 & 6 & 2 \\
0 & 1 & 2 & -1
\end{array}\right] \quad \begin{array}{l}
R_{1}+R_{2} \rightarrow R_{2}
\end{array} \quad \text { no change }} \\
& {\left[\begin{array}{cccc}
-2 & -5 & 4 & -2 \\
0 & 1 & 2 & -1 \\
0 & 3 & 6 & 2 \\
0 & 0 & -3 & 1
\end{array}\right] \quad R_{4} \leftrightarrow R_{2}} \\
& \left.\left[\begin{array}{cccc}
-2 & -5 & 4 & -2 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & -3 & 1
\end{array}\right] \quad \begin{array}{l}
\text { (-1) }
\end{array}\right] \tag{-1}
\end{align*}
$$

$$
\left[\begin{array}{cccc}
-2 & -5 & 4 & -2 \tag{-1}\\
0 & 1 & 2 & -1 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & 5
\end{array}\right] \quad R_{3} \mapsto R_{4}
$$

Calling the new, triangular matrix
$B, \quad \operatorname{det}(B)=-2(1)(-3)(5)=30$
And $\operatorname{det}(B)=(-1)(-1)(-1) \operatorname{det}(A)$

$$
\Rightarrow \quad \operatorname{det}(A)=-1 \operatorname{det}(B)=-30
$$

Some Theorems:

Theorem: The $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem: For $n \times n$ matrix $A, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Theorem: For $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Example
Show that if A is an $n \times n$ invertible matrix, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Since A is invertible, $\operatorname{dat}(A) \neq 0$.
Note $A^{-1} A=I$ and $\operatorname{det}(I)=(1)^{n}=1$
So

$$
\begin{aligned}
& \operatorname{det}\left(A^{-1} A\right)=\operatorname{dt}(I)=1 \\
& \operatorname{det}\left(A^{-1}\right) \operatorname{det}(A)=1
\end{aligned}
$$

Divide bn $\operatorname{det}(A)$ to set

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

Example

Let A be an $n \times n$ matrix, and suppose there exists invertible matrix P such that

$$
B=P^{-1} A P .
$$

Show that

$$
\begin{aligned}
& \operatorname{det}(B)=\operatorname{det}(A) . \\
& \operatorname{det}(B)= \operatorname{det}\left(P^{-1} A P\right) \\
&= \operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P) \\
&= \operatorname{det}\left(P^{-1}\right) \operatorname{det}(P) \operatorname{det}(A) \\
&= \frac{1}{\operatorname{det}(P)} \operatorname{det}(P) \operatorname{det}(A)
\end{aligned}
$$

$$
\begin{aligned}
& =1 \operatorname{det}(A) \\
& =\operatorname{det}(A)
\end{aligned}
$$

[^0]: "If "row" is replaced by "column" in any of the operations, the conclusions still follow.

