February 24 Math 3260 sec. 55 Spring 2020
Section 3.1: Introduction to Determinants

If Ais an n x n matrix, we defined the determinant of A, denoted det(A)
or |Al.

a a
> Ifn=2, det[ 1 12 :| = ay18p2 — a1 4aj2.
doy A2

» If n> 2, letting C; denote the i, j cofactor of A

n
det(A) = Z a;C; where iis fixed
j=1

equivalently

n
det(A) = a;C; where jis fixed
=
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A 4 x 4 Example

Evaluate det(A) where A =
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Cg1 and C41

12 —1
021:(*1)2"_1 det 3 6 2
-5 4 2
3
S (i \c, 7—\_2
v -z

1 <—1L—9 ~2(-6r1e) - (w2 mﬁ}
- (—Zo,%_wz\—_ >0

3 T

S G
-S -2 w 0

-5 v

0

1/

February 21, 2020 3/18



Cg1 and C41
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A 4 x 4 Example
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Triangular Matrices
Definition:

The n x nmatrix A = [a;] is said to be upper triangular if a; = 0 for all
i > j. Itis said to be lower triangular if a; = 0 for all j > i. A matrix
that is both upper and lower triangular is diagonal.

Theorem: For n > 2, the determinant of an n x n triangular matrix is
the product of its diagonal entries. (i.e. if A = [a;] is triangular, then
det(A) = ay1do92 - - - an,,.)
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Example
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Section 3.2: Properties of Determinants
Theorem: Let A be an n x n matrix, and suppose the matrix B is

obtained from A by performing a single elementary row operation’.
Then

(i) If Bis obtained by adding a multiple of a row of A to another row
of A (row replacement), then

det(B) = det(A).

(i) If Bis obtained from A by swapping any pair of rows (row swap) ,
then

det(B) = —det(A).

(iii) If B is obtained from A by scaling any row by the constant k
(scaling), then

det(B) = kdet(A).

'If row” is replaced by "column” in any of the operations, the conclusions still follow.
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Example: Compute the Determinant
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Some Theorems:

Theorem: The n x nmatrix A is invertible if and only if det(A) # 0.

Theorem: For n x n matrix A, det(AT) =det(A).

Theorem: For n x n matrices A and B, det(AB) =det(A) det(B).
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Example

Show that if A is an n x ninvertible matrix, then
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Example

Let A be an n x n matrix, and suppose there exists invertible matrix P
such that

B=P'AP.
Show that

det(B) = det(A).
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