February 25 MATH 1112 sec. 54 Spring 2019

Radian Measure (Some section 6.4)

We defined radian measure, and can convert between radian and degree angle measures.

Converting Between Degrees & Radians Since $360^{\circ} = 2\pi$ rad, we get the following conversion factors: $1^{\circ} = \frac{\pi}{180}$ rad and $1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ}$

Remark: If an angle doesn't have the degree symbol $^{\circ}$ next to it, it is assumed to be in radians!

イロト 不得 トイヨト イヨト ヨー ろくの

February 18, 2019 1 / 26

Question

The radian equivalent to 20° is

イロト イヨト イヨト イヨト February 18, 2019 2/26

э

Some common angles in both measures...

イロト イヨト イヨト イヨト

February 18, 2019 3 / 26

Arclength Formula

Given a circle of radius *r*, the length *s* of the arc subtended by the (positive) central angle θ (**in radians**) is given by

 $s = r\theta$.

The area of the resulting sector is $A_{sector} = \frac{1}{2}r^2\theta$.

Question $S=r\theta$, $A_{redr}=\frac{1}{2}r^2\theta$

An industrial clock has a face that is 3 ft in **diameter**. What is the area of the sector between the 12 and the 4 hour markings?

February 18, 2019

5/26

(a)
$$\frac{9\pi}{2}$$
 ft²
(b) $\frac{3\pi}{2}$ ft²
(c) $\frac{3\pi}{4}$ ft²
(d) 3π ft²

(e) can't be determined without more information

Motion on a Circle: Angular & Linear Speed

Definition: (angular speed) If an object moves along the arc of a circle through a central angle θ in the time *t*, the angular speed is denoted by ω (lower case omega) and is defined by

$$\omega = \frac{\theta}{t}$$

4 D N 4 B N 4 B N 4 B N

February 18, 2019

6/26

Definition: (linear speed) If the circle has radius *r*, then the distance traveled is the arclength $s = r\theta$. The linear speed is denoted by ν (lower case nu) and is defined by

$$\nu = \frac{s}{t} = \frac{r\theta}{t} = r\omega.$$

Example

Suppose an ant crawls along the rim of a circular glass with radius 2 inches, and traverses the arc indicated in red in 20 seconds. What are the angular and linear speeds of the ant, and how far does it travel?

$$\frac{1}{121} = -,$$

$$\frac{1}$$

◆□ ▶ < 圕 ▶ < 틥 ▶ < 틥 ▶ 目 の Q ペ February 18, 2019 8 / 26

0= 25, r= 2in, and the fine interval t = 20 sec $\omega = \frac{\theta}{L} = \frac{2\pi/3}{20 \text{ sec}} = \frac{\pi}{30} \frac{1}{\text{ sec}}$ The angular speed $\gamma = \Gamma \omega = (z_{1n}) \cdot \frac{\pi}{30} \frac{1}{5cc}$ The linear speed $=\frac{\pi}{15}\frac{in}{5ec}$ $S = \Gamma \Theta = (2in) \left(\frac{2\pi}{3}\right) = \frac{4\pi}{3}$ in The distance travelad

> < □ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の Q @ February 18, 2019 9 / 26

Remember that the formulas for

arclength, sector area, angular speed, & linear speed

are for an angle in radians. An angle in degrees must be converted to radians before applying any of these formulas.

February 18, 2019

10/26