February 25 MATH 1112 sec. 54 Spring 2019

Radian Measure (Some section 6.4)

We defined radian measure, and can convert between radian and degree angle measures.

Converting Between Degrees \& Radians

Since $360^{\circ}=2 \pi$ rad, we get the following conversion factors:

$$
1^{\circ}=\frac{\pi}{180} \mathrm{rad} \quad \text { and } \quad 1 \mathrm{rad}=\left(\frac{180}{\pi}\right)^{\circ}
$$

Remark: If an angle doesn't have the degree symbol ${ }^{\circ}$ next to it, it is assumed to be in radians!

Question

The radian equivalent to 20° is
(a) $\frac{360}{\pi}$
(b) $\frac{\pi}{10}$

$$
20 \cdot \frac{\pi}{180}=\frac{2 \pi}{18}=\frac{\pi}{9}
$$

(c) 20π
(d) $\frac{\pi}{9}$

Some common angles in both measures...

Arclength Formula

Given a circle of radius r, the length s of the arc subtended by the (positive) central angle θ (in radians) is given by

$$
s=r \theta
$$

The area of the resulting sector is $A_{\text {sector }}=\frac{1}{2} r^{2} \theta$.

Question $\operatorname{sis} \theta, \quad A_{\text {sechr }}=\frac{1}{2} r^{2} \theta$

An industrial clock has a face that is 3 ft in diameter. What is the area of the sector between the 12 and the 4 hour markings?
(a) $\frac{9 \pi}{2} f t^{2}$
(b) $\frac{3 \pi}{2} f t^{2}$
(c) $\frac{3 \pi}{4} f t^{2}$
(d) $3 \pi \mathrm{ft}^{2}$
(e) can't be determined without more information

Motion on a Circle: Angular \& Linear Speed

Definition: (angular speed) If an object moves along the arc of a circle through a central angle θ in the time t, the angular speed is denoted by ω (lower case omega) and is defined by

$$
\omega=\frac{\theta}{t} .
$$

Definition: (linear speed) If the circle has radius r, then the distance traveled is the arclength $s=r \theta$. The linear speed is denoted by ν (lower case nu) and is defined by

$$
\nu=\frac{s}{t}=\frac{r \theta}{t}=r \omega
$$

Example

Suppose an ant crawls along the rim of a circular glass with radius 2 inches, and traverses the arc indicated in red in 20 seconds. What are the angular and linear speeds of the ant, and how far does it travel?

$$
\phi+60^{\circ}=90^{\circ} \Rightarrow \phi=30^{\circ}
$$

The ont traveled through $\theta=90^{\circ}+30^{\circ}=120^{\circ}$ In radians, $\theta=120^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{2 \pi}{3}$
we have $\theta=\frac{2 \pi}{3}, r=2$ in, and the tine interval $t=20 \mathrm{sec}$
The angler speed $\omega=\frac{\theta}{t}=\frac{2 \pi / 3}{20 \mathrm{sec}}=\frac{\pi}{30} \frac{1}{\mathrm{sec}}$
The linear speed $\nu=r \omega=(2 i n) \cdot \frac{\pi}{30} \frac{1}{\mathrm{sec}}$

$$
=\frac{\pi}{15} \frac{\text { in }}{\sec }
$$

The distance traveled $\operatorname{sir} \theta=(2$ in $)\left(\frac{2 \pi}{3}\right)=\frac{4 \pi}{3}$ in

Caveat!

Remember that the formulas for

arclength, sector area, angular speed, \& linear speed

are for an angle in radians. An angle in degrees must be converted to radians before applying any of these formulas.

