February 25 Math 2335 sec 51 Spring 2016

Section 4.1: Polynomial Interpolation

Context: We consider a set of distinct data points $\left\{\left(x_{i}, y_{i}\right) \mid i=0, \ldots, n\right\}$ that we wish to fit with a polynomial curve.

- For a set of $n+1$ points, we can fit a polynomial $P_{n}(x)$ of degree at most n.
- We assume that the points are distinct in the sense that $x_{i} \neq x_{j}$ when $i \neq j$.
- We will have two formulations, a Lagrange formulation and a Newton divided difference formulation.

Lagrange Interpolation Basis Functions

Linear Case: Given two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ we have

$$
\begin{gathered}
P_{1}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x) \\
\text { Where } \quad L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}, \quad \text { and } \quad L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}} .
\end{gathered}
$$

The functions L_{0} and L_{1} are examples of
Lagrange Basis Functions.

Lagrange Interpolating Basis Functions

Quadratic Case: Given three distinct points (x_{0}, y_{0}), $\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$ define

$$
\begin{aligned}
L_{0}(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} \\
L_{1}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \\
L_{2}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

These are the Lagrange interpolating basis functions for building a quadratic with the given x-values. The unique interpolating polynomial of degree at most 2 for these points is

$$
P_{2}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x)
$$

Higher Degree Interpolation: Lagrange's Formula

Suppose we have $n+1$ distinct points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. We define the $n+1$ Lagrange interpolation basis functions $L_{0}, L_{1}, \ldots, L_{n}$ by

$$
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{n}\right)}
$$

for $i=0, \ldots, n$.
Compactly: $\quad L_{i}(x)=\prod_{k=0, k \neq i}^{n}\left(\frac{x-x_{k}}{x_{i}-x_{k}}\right), \quad i=0, \ldots, n$
Lagrange's Formula The unique polynomial of degree $\leq n$ passing through these $n+1$ points is

$$
P_{n}(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+\cdots+y_{n} L_{n}(x)
$$

Sifting Property

The basis functions have the following property

$$
L_{i}\left(x_{j}\right)= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

Kronecker Delta Function: is denoted by $\delta_{i j}$ (sometimes by δ_{i}^{j}) and is defined by

$$
\delta_{i j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

So we can write $L_{i}\left(x_{j}\right)=\delta_{i j}$.

Example
Find $P_{1}(x)$ given the pair of points $(0,1)$ and $(4,5)$.

$$
\begin{gathered}
\quad\left(x_{0}, y_{0}\right) \quad\left(x_{1}, y_{1}\right) \\
L_{0}(x)=\frac{x-x_{1}}{x_{0}-x_{1}}=\frac{x-4}{0-4}=\frac{-1}{4}(x-4) \\
L_{1}(x)=\frac{x-x_{0}}{x_{1}-x_{0}}=\frac{x-0}{4-0}=\frac{1}{4} x \\
P_{1}(x)=y_{0} L_{0}(x)+y, L_{1}(x)=1\left[-\frac{1}{4}(x-4)\right]+5\left[\frac{1}{4} x\right] \\
P_{1}(x)=x+1
\end{gathered}
$$

Example
Find $P_{2}(x)$ given the points $(0,1),(4,5)$, and $(2,-1)$.

$$
\begin{aligned}
& \left(x_{0}, y_{0}\right)\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \\
& L_{0}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}=\frac{(x-4)(x-2)}{(0-4)(0-2)}=\frac{1}{8}(x-4)(x-2) \\
& L_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}=\frac{(x-0)(x-2)}{(4-0)(4-2)}=\frac{1}{8} x(x-2) \\
& L_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}=\frac{(x-0)(x-4)}{(2-0)(2-4)}=\frac{-1}{4} x(x-4)
\end{aligned}
$$

$$
\begin{aligned}
P_{2}(x) & =y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x) \\
& =1\left[\frac{1}{8}(x-2)(x-4)\right]+5\left[\frac{1}{8} x(x-2)\right]-1\left[\frac{-1}{4} x(x-4)\right] \\
& =\frac{1}{8}\left(x^{2}-6 x+8\right)+\frac{5}{8}\left(x^{2}-2 x\right)+\frac{1}{4}\left(x^{2}-4 x\right) \\
P_{2}(x) & =x^{2}-3 x+1
\end{aligned}
$$

Newton Divided Differences

For the data set $(0,1)$ and $(4,5)$, we found that

$$
P_{1}(x)=x+1
$$

And for the data set $(0,1),(4,5)$, and $(2,-1)$, we found that

$$
P_{2}(x)=x^{2}-3 x+1
$$

Note: The second set is the same as the first with a single additional point. However, there is no obvious connection between the two polynomials P_{1} and P_{2}.

Newton Divided Differences

We would like an alternative formulation that would allow us to compute P_{2} from P_{1}, or perhaps P_{3} from $P_{2}{ }^{1}$ for a common data set.

Recall: If we have a sufficiently differentiable function f, then the Taylor polynomial

$$
\begin{aligned}
p_{3}(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3} \\
& =p_{2}(x)+\text { an extra term. }
\end{aligned}
$$

Remark: For a data set, there isn't a known function to take derivatives of. So we need something that serves the same purpose as derivatives.

[^0]
Newton Divided Differences

Definition: Let f be a function whose domain contains the two distinct numbers x_{0} and x_{1}. We define the first-order divided difference of $f(x)$ by

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Notation: We'll use the square brackets "[]" with commas between the numbers to denote the divided difference.

Example (Newton Divided Difference)

Compute the first-order divided difference $f[0.1,0.2]$.
(a) Given $f(x)=2 x^{2}$

$$
\begin{aligned}
f[0.1,0.2] & =\frac{f(0.2)-f(0.1)}{0.2-0.1} \\
& =\frac{2(0.2)^{2}-2(0.1)^{2}}{0.1}=\frac{0.08-0.02}{0.1} \\
& =\frac{0.06}{0.1}=0.6
\end{aligned}
$$

Example

Compute the first-order divided difference $g[0.1,0.2]$.
(b) Given $g(0.1)=-2$ and $g(0.2)=1.1$

$$
\begin{aligned}
g[0.1,0.2] & =\frac{g(0.2)-g(0.1)}{0.2-0.1} \\
& =\frac{1.1-(-2)}{0.1}=\frac{3.1}{0.1}=31
\end{aligned}
$$

Some Properties of $1^{\text {st }}$ order Divided Difference

Symmetry: $f\left[x_{0}, x_{1}\right]=f\left[x_{1}, x_{0}\right]$

$$
\begin{aligned}
& f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
& =\frac{-\left(f\left(x_{0}\right)-f\left(x_{1}\right)\right)}{-\left(x_{0}-x_{1}\right)}=\frac{f\left(x_{0}\right)-f\left(x_{1}\right)}{x_{0}-x_{1}} \\
& =f\left[x_{1}, x_{0}\right]
\end{aligned}
$$

Some Properties of $1^{\text {st }}$ order Divided Difference

Relation to Derivative: If f is differentiable on the interval $x_{0} \leq x \leq x_{1}$, then by the Mean Value Theorem there exists a number c between x_{0} and x_{1} such that

$$
f\left[x_{0}, x_{1}\right]=f^{\prime}(c)
$$

So if x_{0} and x_{1} are close together and f is differentiable, then

$$
f\left[x_{0}, x_{1}\right] \approx f^{\prime}\left(\frac{x_{0}+x_{1}}{2}\right)
$$

Example (of second property)
Given the table of values, approximate the value $\sec ^{2}(1.15)$.

x	1	1.1	1.2	1.3
$\tan x$	1.5574	1.9648	2.5722	3.6021

If $f(x)=\tan x$ then $f^{\prime}(x)=\sec ^{2} x$.

$$
\begin{gathered}
f[1.1,1.2] \approx f^{\prime}\left(\frac{1.1+1.2}{2}\right)=f^{\prime}(1.15) \\
f[1.1,1.2]=\frac{f(1.2)-f(1.1)}{1.2-1.1}=\frac{2.5722-1.9648}{0.1}
\end{gathered}
$$

$$
=\frac{0.6074}{0.1}=6.074
$$

Example Continued...
Use the value $\sec ^{2}(1.15)=5.9930$ (which is correct to four decimal places) to determine the error and relative error.

$$
\begin{aligned}
& \text { Here } x_{A}=6.074 \text { and } x_{T}=5.9930 \\
& E_{r r}\left(x_{A}\right)=x_{T}-x_{A}=5.9930-6.074 \doteq-0.0810 \\
& \operatorname{Rel}\left(x_{A}\right)=\frac{E_{r r}\left(x_{A}\right)}{x_{T}}=\frac{-0.0810}{5.9930} \doteq-0.0135
\end{aligned}
$$

Higher Order Divided Differences

Suppose we start with three distinct values x_{0}, x_{1}, x_{2} in our domain. We can compute two first order divided differences

$$
f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \quad \text { and } \quad f\left[x_{1}, x_{2}\right]=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

Definition: The second-order divided difference of $f(x)$ at the points x_{0}, x_{1}, and x_{2} is

$$
f\left[x_{0}, x_{1}, x_{2}\right]=\frac{f\left[x_{1}, x_{2}\right]-f\left[x_{0}, x_{1}\right]}{x_{2}-x_{0}}
$$

Higher Order Divided Differences

Let $x_{0}, x_{1}, \ldots, x_{n}$ be distinct numbers in the domain of the function f. Definition: The third-order divided difference of $f(x)$ at the points x_{0}, x_{1}, x_{2}, and x_{3} is

$$
f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]=\frac{f\left[x_{1}, x_{2}, x_{3}\right]-f\left[x_{0}, x_{1}, x_{2}\right]}{x_{3}-x_{0}}
$$

Definition: The $n^{\text {th }}$-order divided difference of $f(x)$ at the points x_{0}, \ldots, x_{n} is

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

Properties of Newton Divided Differences

Symmetry: Let $\left\{x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{n}}\right\}$ be any permutation (rearrangement) of the numbers $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. Then

$$
f\left[x_{i_{0}}, x_{i_{1}}, \ldots, x_{i_{n}}\right]=f\left[x_{0}, x_{1}, \ldots, x_{n}\right] .
$$

(That is, the order of the x-values doesn't affect the value of the divided difference!)

Example
Consider the set of data

x	0	2	4
$f(x)$	1	-1	5

Compute the second order divided differences $f[0,2,4]$ and $f[4,0,2]$.

$$
\begin{aligned}
& f[0,2,4]=\frac{f[2,4]-f[0,2]}{4-0}, f[4,0,2]=\frac{f[0,2]-f[4,0]}{2-4} \\
& f[2,4]=\frac{f(4)-f(2)}{4-2}=\frac{5-(-1)}{2}=3 \\
& f[0,2]=\frac{f(2)-f(0)}{2-0}=\frac{-1-1}{2}=-1
\end{aligned}
$$

$$
f[4,0]=\frac{f(0)-f(4)}{0-4}=\frac{1-5}{-4}=1
$$

$$
f[0,2,4]=\frac{3-(-1)}{4-0}=\frac{4}{4}=1
$$

$$
f[4,0,2]=\frac{-1-1}{2-4}=\frac{-2}{-2}=1
$$

Properties of Newton Divided Differences

Relation to Derivatives:

Theorem: Suppose f is n times continuously differentiable on an interval $\alpha \leq x \leq \beta$, and that x_{0}, \ldots, x_{n} are distinct numbers in this interval. Then

$$
f\left[x_{0}, x_{1}, \ldots, x_{n}\right]=\frac{1}{n!} f^{(n)}(c)
$$

for some number c between the smallest and the largest of the numbers x_{0}, \ldots, x_{n}.

Example
Given the table of values, approximate the value $\sec ^{2}(1.1) \tan (1.1) .{ }^{2}$

x	1	1.1	1.2	1.3
$\tan x$	1.5574	1.9648	2.5722	3.6021

For $f(x)=\tan x, \quad \frac{1}{2} f^{\prime \prime}(1.1) \approx f[1,1.1,1.2]$
we need $f[1.1,1.2]=6.074$ (from earlier)
and $\quad f[1,1.1]=\frac{1.9648-1.5574}{1.1-1}=4.074$
${ }^{2}$ If $f(x)=\tan x$, then $\frac{1}{2} f^{\prime \prime}(x)=\sec ^{2}(x) \tan (x)$.

$$
\begin{aligned}
\operatorname{Sec}^{2}(1.1) \tan (1.1) & \approx \frac{f[1.1,1.2]-f[1,1.1]}{1.2-1.0} \\
& =\frac{6.074-4.074}{0.2}=\frac{2}{0.2}=10.000
\end{aligned}
$$

Interpolating Polynomial: Newton Divided Difference Formula

Suppose we have $n+1$ distinct data points ($x_{0}, f\left(x_{0}\right)$), $\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$.

Linear Interpolation: The linear interpolating polynomial through $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ can be written as

$$
P_{1}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right] .
$$

Quadratic Interpolation: The quadratic interpolating polynomial through ($\left.x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right)$, and ($\left.x_{2}, f\left(x_{2}\right)\right)$ can be written as

$$
P_{2}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]
$$

Important Observation 1

$$
P_{1}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]
$$

Show that $P_{1}\left(x_{1}\right)=f\left(x_{1}\right)$.

$$
\begin{aligned}
& \text { Recall } f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}} \\
& P_{1}\left(x_{1}\right)=f\left(x_{0}\right)+\left(x_{1}-x_{0}\right)\left(\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\right) \\
&=f\left(x_{0}\right)+f\left(x_{1}\right)-f\left(x_{0}\right)=f\left(x_{1}\right)
\end{aligned}
$$

Important Observation 2

$$
\begin{gathered}
P_{1}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right], \quad \text { and } \\
P_{2}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]
\end{gathered}
$$

Notice that

$$
P_{2}(x)=P_{1}(x)+\text { an extra term! }
$$

Example
Compute $P_{1}(x)$ using Newton divided differences with $\left(x_{0}, y_{0}\right)=(0,1)$ and $\left(x_{1}, y_{1}\right)=(4,5)$.

Need $f\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\frac{5-1}{4}=1$

$$
\begin{aligned}
& P_{1}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right] \\
& P_{1}(x)=1+(x-0) \cdot 1=x+1
\end{aligned}
$$

Example Extended...
Now compute $P_{2}(x)$ if the point $\left(x_{2}, y_{2}\right)=(2,-1)$ is added to the data.

$$
P_{2}(x)=P_{1}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]
$$

From before $f[0,4,2]=1$

$$
\begin{aligned}
P_{2}(x)=x+1 & +x(x-4) \cdot 1=x+1+x^{2}-4 x \\
& =x^{2}-3 x+1
\end{aligned}
$$

Interpolating Polynomial: Newton Divided Difference Formula

Higher degree polynomials are defined recursively
Cubic Interpolation: The cubic interpolating polynomial through $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right)$, and $\left(x_{3}, f\left(x_{3}\right)\right)$ can be written as

$$
\begin{gathered}
P_{3}(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]+ \\
+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
\end{gathered}
$$

Note that

$$
P_{3}(x)=P_{2}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) f\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
$$

Interpolating Polynomial: Newton Divided Difference Formula

$k^{\text {th }}$ Degree Interpolation: For $k \geq 2$, the polynomial of degree at most k through the points $\left(x_{0}, f\left(x_{0}\right)\right), \ldots\left(x_{k}, f\left(x_{k}\right)\right)$ is

$$
P_{k}(x)=P_{k-1}(x)+\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right) f\left[x_{0}, \ldots, x_{k}\right]
$$

[^0]: ${ }^{1}$ More generally, to compute P_{k} from P_{k-1}.

