February 26 MATH 1112 sec. 52 Spring 2020

Trigonometric Functions Graphs of Sine and Cosine Functions

Our goal is to graph functions of the form

$$
f(x)=a \sin (b x-c)+d \quad \text { or } \quad f(x)=a \cos (b x-c)+d
$$

Note: here we will be graphing points (x, y) on a curve $y=f(x)$.

Amplitude

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Definition: Let a be any nonzero real number. The amplitude of the function f defined above is the value $|a|$.

Recall that this is half the distance between the maximum and minimum values.

If $a<0$ the graph is reflected in the x-axis. But the amplitude is still $|a|$.

Amplitude

$f(x)=\operatorname{asin} x$

$\cdots \cdots y=\sin (x)-y=2 \sin (x)-y=1 / 2 \sin (x)$

$\cdots \cdots y=\cos (x)-y=2 \cos (x)-y=1 / 2 \cos (x)$

Example
Identify the amplitude of each function. Determine if the graph is reflected in the x-axis.
(a) $f(x)=3 \sin (4 x-2)+1$

Amplitude $=|3|=3$ $a=3$
$a>0$ no reflection
(b)

$$
\begin{array}{rl}
f(x)=2-6 \cos (2 x+3) & \text { Amplitude }=|-6|=6 \\
=-6 \cos (2 x+3)+2 & a<0 \\
a=-6 & \text { horizontal } \\
& \text { reflection }
\end{array}
$$

Question

The figure shows two periods of the plot of $y=f(x)$ where
(a) $f(x)=4 \sin x$
(b) $f(x)=-4 \sin x$
(c) $f(x)=4 \cos x$
(d) $)(x)=-4 \cos x$

Period

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Theorem: Let b be any positive real number. The fundamental period of the function f above is given by

$$
T=\frac{2 \pi}{b}
$$

Due to symmetry, we can always assume $b>0$. Allowing b to be signed, the period would be written as

$$
T=\frac{2 \pi}{|b|}
$$

Period

Figure: Comparisons with $b=1 / 2,1$, and 2 . On the interval $-2 \pi<x<2 \pi$ we obtain one $(b=1 / 2)$, two $(b=1)$ or four $(b=2)$ full cycles.

Period

Figure: Comparisons with $b=1 / 2,1$, and 2 . On the interval $-2 \pi<x<2 \pi$ we obtain one $(b=1 / 2)$, two $(b=1)$ or four $(b=2)$ full cycles.

Example
Identify the period of each function.
(a) $f(x)=3 \sin (4 x-2)+1$ Period $T=\frac{2 \pi}{b}=\frac{2 \pi}{4}=\frac{\pi}{2}$

$$
b=4
$$

(b)

$$
\begin{aligned}
f(x)=2-6 \cos (2 x+3) & T=\frac{2 \pi}{2}=\pi \\
=-6 \cos (2 x+3)+2 & \\
b=2 &
\end{aligned}
$$

Frequency

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$

Definition: The reciprocal of the period is called the frequency. That is

$$
\text { frequency }=\frac{1}{T}=\frac{b}{2 \pi} .
$$

If x represents time, then

- the period tells us how much time is required for one full cycle, and
- the frequency tells us how many cycles occur in one time unit.

If $y=\cos (b x)$ (or $y=\sin (b x)$), then b the number of cycles occuring in an interval of length 2π.

Question

The period of $y=2 \cos \left(\frac{\pi x}{2}\right)$ is
(a) $T=\frac{\pi}{2} \quad b=\frac{\pi}{2}$
(b) $T=4 \pi$

$$
T=\frac{2 \pi}{b}=\frac{2 \pi}{\pi / 2}
$$

(c) $T=4$
(d) $T=2 \pi^{2}$

Phase Shift (horizontal shift)

Consider: $f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$ Definition: A horizontal shift is called a phase shift. Again assuming that $b>0$, the phase shift for f above is

$$
\frac{|c|}{b} \text { units }
$$

$$
\begin{aligned}
& b x-c \\
& =b\left(x-\frac{c}{b}\right)
\end{aligned}
$$

to the right if $c>0$ and to the left if $c<0$.

Vertical Shift

Consider: $\quad f(x)=a \sin (b x-c)+d$ or $f(x)=a \cos (b x-c)+d$
Definition: If d is a nonzero number, then the function f has a vertical shift of $|d|$ units up if $d>0$ and down if $d<0$.

Parent Plots

The period can be divided into four equal segments.
For the sine function $\quad x$-int $\rightarrow \max \rightarrow x$-int $\rightarrow \min \rightarrow x$-int

Parent Plots

The period can be divided into four equal segments.
For the cosine function $\max \rightarrow x$-int $\rightarrow \min \rightarrow x$-int $\rightarrow \max$

$$
f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)=-4 \cos \left(\pi x-\frac{\pi}{2}\right)+2
$$

Identify the period, amplitude, phase shift, any vertical shift, and reflection. Identify the key points of a full period. Plot two full periods.

$$
\begin{array}{ll}
a=-4 & \frac{|c|}{b}=\frac{\pi / 2}{\pi}=\frac{1}{2} \\
b=\pi & \\
c=\frac{\pi}{2} & \\
d=2 &
\end{array}
$$

- Amplitude
- Period $\frac{2 \pi}{6}=\frac{2 F}{T}=2$
- Phase shift $1 c 1 / 6=\frac{1}{2}$ right shift $\frac{1}{2}$ units
- Vertical shift 2 up
- Horizontal reflection? yes since $a<0$

$$
f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)
$$

Key points:
phase shift $\frac{1}{2}$ right
Key points for
period of 2

$$
\frac{\text { period }}{4}=\frac{2}{4}=\frac{1}{2}
$$

x	$f(x)$
$\frac{1}{2}$	-2
1	2
$\frac{3}{2}$	6
2	2
$\frac{5}{2}$	-2

$$
\begin{array}{c|c}
y=\cos x \\
x & \cos x \\
\hline 0 & 1 \\
\frac{\pi}{2} & 0 \\
\pi & -1 \\
\frac{3 \pi}{2} & 0 \\
2 \pi & 1
\end{array}
$$

$f(x)=2-4 \cos \left(\pi x-\frac{\pi}{2}\right)$

Plot two periods of its graph.

