February 26 Math 3260 sec. 51 Spring 2020

Section 3.3: Crammer's Rule, Volume, and Linear Transformations
Crammer's Rule is a method for solving a square system $A \mathbf{x}=\mathbf{b}$ by use of determinants. While it is impractical for large systems, it provides a fast method for some small systems (say 2×2 or 3×3).

Definition: For $n \times n$ matrix A and \mathbf{b} in \mathbb{R}^{n}, let $A_{i}(\mathbf{b})$ be the matrix obtained from A by replacing the $i^{\text {th }}$ column with the vector \mathbf{b}. That is

$$
A_{i}(\mathbf{b})=\left[\mathbf{a}_{1} \cdots \mathbf{a}_{i-1} \mathbf{b} \mathbf{a}_{i+1} \cdots \mathbf{a}_{n}\right]
$$

Crammer's Rule

Theorem: Let A be an $n \times n$ nonsingular matrix. Then for any vector \mathbf{b} in \mathbb{R}^{n}, the unique solution of the system $A \mathbf{x}=\mathbf{b}$ is given by \mathbf{x} where

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}, \quad i=1, \ldots, n
$$

Example
Determine whether Crammer's rule can be used to solve the system. If so, use it to solve the system.

$$
\begin{aligned}
2 x_{1}+x_{2} & =9 \\
-x_{1}+7 x_{2} & =
\end{aligned}
$$

$$
\begin{array}{r}
\text { In matrix form }
\end{array} \begin{array}{r}
{\left[\begin{array}{cc}
2 & 1 \\
-1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]} \\
\left.A \quad \begin{array}{c}
9 \\
-3
\end{array}\right] \\
\vec{x}
\end{array} \vec{b}
$$

$$
\begin{aligned}
& A_{1}(\vec{b})=\left[\begin{array}{cc}
9 & 1 \\
-3 & 7
\end{array}\right] \\
& A_{2}(\vec{b})=\left[\begin{array}{cc}
2 & 9 \\
-1 & -3
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(A)=14-(-1)=15 \\
& \operatorname{det}(A) \neq 0 \\
& A \text { is non singular } \\
& \text { February } 24,2020 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det}\left(A_{1}(\bar{b})\right) & =63-(-3)=66 \\
\operatorname{det}\left(A_{2}(\bar{b})\right) & =-6-(-9)=3 \\
x_{1} & =\frac{\operatorname{det}(A)(A)=15}{\operatorname{det}(A))}=\frac{66}{15}=\frac{22}{5} \\
x_{2} & =\frac{\operatorname{det}\left(A_{2}(\vec{b})\right)}{\operatorname{det}(A)}=\frac{3}{15}=\frac{1}{5}
\end{aligned}
$$

Application

In various engineering applications, electrical or mechanical components are often chosen to try to control the long term behavior of a system (e.g. adding a damper to kill off oscillatory behavior). Using Laplace Transforms, differential equations are converted into algebraic equations containing a parameter s. These give rise to systems of the form

$$
\begin{aligned}
3 s X-2 Y & =4 \\
-6 X+s Y & =1
\end{aligned}
$$

Determine the values of s for which the system is uniquely solvable. For such s, find the solution (X, Y) using Crammer's rule.
$3 s X-2 Y=4 \quad$ In matrix form $-6 X+s Y=1$

$$
\begin{gathered}
{\left[\begin{array}{cc}
3 s & -z \\
-6 & s
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
y \\
1
\end{array}\right]} \\
A \quad \vec{x}
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{det}(A)=3 s^{2}-12=3\left(s^{2}-4\right) \\
& \quad \operatorname{det}(A) \neq 0 \text { for } \quad s \neq \pm 2
\end{aligned}
$$

The system has one solution provided $s \neq 2$ or $s \neq-2$.

$$
A_{1}(\vec{b})=\left[\begin{array}{cc}
4 & -2 \\
1 & 5
\end{array}\right] \quad A_{2}(\vec{b})=\left[\begin{array}{cc}
3 s & 4 \\
-6 & 1
\end{array}\right]
$$

$$
\begin{gathered}
\operatorname{det}\left(A_{1}\left(\vec{b}_{0}\right)\right)=4 s+2 \quad \operatorname{dtt}\left(A_{2}(\vec{b})\right)=3 s+24 \\
\operatorname{det}(A)=3\left(s^{2}-4\right)
\end{gathered}
$$

For $\quad s \neq \pm 2$

$$
\begin{aligned}
& X=\frac{\operatorname{dt}\left(A_{1}(\vec{b})\right)}{\operatorname{det}(A)}=\frac{4 s+2}{3\left(s^{2}-4\right)} \\
& \Psi=\frac{\operatorname{dt}\left(A_{2}(\vec{b})\right)}{\operatorname{dt}(A)}=\frac{3(s+8)}{3\left(s^{2}-4\right)}=\frac{s+8}{s^{2}-4}
\end{aligned}
$$

Area of a Parallelogram

Theorem: If \mathbf{u} and \mathbf{v} are nonzero, nonparallel vectors in \mathbb{R}^{2}, then the area of the parallelogram determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v}]$.

Example

Find the area of the parallelogram with vertices $(0,0),(-2,4),(4,-5)$, and $(2,-1)$.

$$
\begin{aligned}
& \vec{u}=\left[\begin{array}{c}
-2 \\
4
\end{array}\right] \\
& \vec{v}=\left[\begin{array}{c}
4 \\
-5
\end{array}\right] \\
& A=[\vec{u} \vec{v}]=\left[\begin{array}{rr}
-2 & 4 \\
4 & -5
\end{array}\right] \\
& \operatorname{dot}(A)=10-16=-6
\end{aligned}
$$

The area $A_{\text {ea }}=\mid \operatorname{dt}\left(A_{3} \mid=6\right.$

Volume of a Parallelopiped

Theorem: If \mathbf{u}, \mathbf{v}, and \mathbf{w} are nonzero, non-collinear vectors in \mathbb{R}^{3}, then the volume of the parallelopiped determined by these vectors is $|\operatorname{det}(A)|$ where $A=[\mathbf{u} \mathbf{v} \mathbf{w}]$.

Example
Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at $(2,3,0),(-2,0,2)$ and $(-1,3,-1)$.

$$
\begin{aligned}
& \vec{u}=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right] \vec{\omega}=\left[\begin{array}{c}
-1 \\
3 \\
-1
\end{array}\right] \\
& \text { Let } \\
& A=\left[\begin{array}{lll}
\vec{u} & \vec{v} & \vec{w}
\end{array}\right] \\
&=\left[\begin{array}{ccc}
2 & -2 & -1 \\
3 & 0 & 3 \\
0 & 2 & -1
\end{array}\right] \quad(2,3,0)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{dtt}(A) & =a_{12} C_{12}+a_{22}^{10} C_{22}+a_{32} C_{32} \\
& =-2(-1)^{3}\left|\begin{array}{cc}
3 & 3 \\
0 & -1
\end{array}\right|+2(-1)^{5}\left|\begin{array}{cc}
2 & -1 \\
3 & 3
\end{array}\right| \\
& =2(-3-0)-2(6+3) \\
& =-6-18=-24
\end{aligned}
$$

The Volume

$$
V=|\operatorname{det}(A)|=24
$$

February 24, 2020

