February 26 Math 3260 sec. 55 Spring 2020

Section 3.3: Crammer’s Rule, Volume, and Linear Transformations

Crammer’s Rule is a method for solving a square system Ax = b by
use of determinants. While it is impractical for large systems, it
provides a fast method for some small systems (say 2 x 2 or 3 x 3).

Definition: For n x n matrix Aand b in R”, let A;(b) be the matrix
obtained from A by replacing the i column with the vector b. That is

Al(b) = [a1 SRR - VI b ajq-- .an]
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Crammer’s Rule

Theorem: Let A be an n x nnonsingular matrix. Then for any vector b
in R", the unique solution of the system Ax = b is given by x where

_ detA,(b)

Xj = detA i:1,...,n
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Example
Determine whether Crammer’s rule can be used to solve the system. If

S0, use it to solve the system.

2y + X = 9
X1 + 77X = -3
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Application

In various engineering applications, electrical or mechanical
components are often chosen to try to control the long term behavior
of a system (e.g. adding a damper to kill off oscillatory behavior).
Using Laplace Transforms, differential equations are converted into
algebraic equations containing a parameter s. These give rise to
systems of the form

3sX — 2Y =
—-6X + sY = 1

Determine the values of s for which the system is uniquely solvable.
For such s, find the solution (X, Y) using Crammer’s rule.
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Area of a Parallelogram

Theorem: If u and v are nonzero, nonparallel vectors in R?, then the
area of the parallelogram determined by these vectors is |det(A)|
where A = [u v].
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Example
Find the area of the parallelogram with vertices (0,0), (—2,4), (4, —5),
and (2,—1). j
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Volume of a Parallelopiped

Theorem: If u, v, and w are nonzero, non-collinear vectors in R3, then
the volume of the parallelopiped determined by these vectors is
|det(A)| where A = [u v w].
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Example

Find the volume of the parallelepiped with one vertex at the origin and
adjacent vertices at (2,3,0), (—2,0,2) and (—1,3, —1).
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