February 27 MATH 1112 sec. 54 Spring 2019

Sections 6.1 \& 6.2: Trigonometric Functions of Acute Angles In this section, we are going to define six new functions called trigonometric functions. We begin with an acute angle θ in a right triangle with the sides whose lengths are labeled:

Sine, Cosine, and Tangent

For the acute angle θ, we define the three numbers as follows

$$
\begin{aligned}
\sin \theta=\frac{\text { opp }}{\text { hyp }}, & \text { read as "sine theta" } \\
\cos \theta=\frac{\text { adj }}{\text { hyp }}, & \text { read as "cosine theta" } \\
\tan \theta=\frac{\text { opp }}{\text { adj }}, & \text { read as "tangent theta" }
\end{aligned}
$$

Note that these are numbers, ratios of side lengths, and have no units.
It may be convenient to enclose the argument of a trig function in parentheses. That is,

$$
\sin \theta=\sin (\theta)
$$

Cosecant, Secant, and Cotangent

The remaining three trigonometric functions are the reciprocals of the first three

$$
\begin{aligned}
& \csc \theta=\frac{\text { hyp }}{\text { opp }}=\frac{1}{\sin \theta}, \quad \text { read as "cosecant theta" } \\
& \sec \theta=\frac{\text { hyp }}{\text { adj }}=\frac{1}{\cos \theta}, \quad \text { read as "secant theta" } \\
& \cot \theta=\frac{\text { adj }}{\text { opp }}=\frac{1}{\tan \theta}, \quad \text { read as "cotangent theta" }
\end{aligned}
$$

A Word on Notation

The trigonometric ratios define functions:
input angle number \rightarrow output ratio number.
From the definitions, we see that

$$
\csc \theta=\frac{1}{\sin \theta}
$$

Functions have arguments. It is NOT acceptable to write the above relationship as

$$
\csc =\frac{1}{\sin }
$$

writing \sin is like writing $\sqrt{ }$ with nothing
under the sign.

Example
Determine the six trigonometric values of the acute angle θ.
If the opposite leg is b, then

$$
\begin{aligned}
& 3^{2}+b^{2}=7^{2} \\
& b^{2}=7^{2}-3^{2}=40 \Rightarrow b=\sqrt{40}=2 \sqrt{10} \\
& \sin \theta=\frac{\sqrt{40}}{7} \frac{\text { opp }}{\text { hyp }} \\
& \cos \theta=\frac{3}{7} \frac{\text { adj }}{\text { hyp }} \\
& \tan \theta=\frac{\sqrt{40}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \csc \theta=\frac{1}{\sin \theta}=\frac{7}{\sqrt{40}} \quad\left(=\frac{7 \sqrt{40}}{40}\right) \\
& \sec \theta=\frac{1}{\cos \theta}=\frac{7}{3} \\
& \cot \theta=\frac{3}{\sqrt{40}}
\end{aligned}
$$

Example
Determine the six trigonometric values of the acute angle θ.
 $\sin \theta=\frac{4}{5}$

$$
\begin{aligned}
\frac{8}{C}=\frac{4}{5} \Rightarrow 8.5 & =4 C \\
C & =10
\end{aligned}
$$

Calling the adjacent leg a

$$
\begin{gathered}
a^{2}+8^{2}=10^{2} \Rightarrow a^{2}=100-64=36 \\
a=6
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{adj}=6, \quad \text { opp }=8, \text { and } \quad h_{y p}=10 \\
& \sin \theta=\frac{4}{5}, \cos \theta=\frac{6}{10}=\frac{3}{5} \\
& \tan \theta=\frac{8}{6}=\frac{4}{3}, \cot \theta=\frac{6}{8}=\frac{3}{4} \\
& \csc \theta=\frac{5}{4}, \quad \sec \theta=\frac{5}{3} \\
& \csc \theta=\frac{1}{\sin \theta} \text { ard } \sec \theta=\frac{1}{\cos \theta}
\end{aligned}
$$

Question

For the angle θ shown, which statement is correct?

(a) $\sin \theta=\frac{\sqrt{8}}{3}$ and $\cos \theta=\frac{1}{3}$
(b) $\sin \theta=\frac{1}{3}$ and $\cos \theta=\frac{\sqrt{2}}{3}$
(c) $\tan \theta=\frac{1}{3}$ and $\sin \theta=\frac{\sqrt{2}}{3}$
(d) $\tan \theta=\sqrt{2}$ and $\cot \theta=\frac{1}{\sqrt{2}}$

Question

(True or False) If $\quad \sin =\frac{1}{\sqrt{3}} \quad$, then $\quad \cos =\frac{\sqrt{2}}{\sqrt{3}}$.

- True, because $1^{2}+(\sqrt{2})^{2}=(\sqrt{3})^{2}$
- False because neither of those equations make any sense. (b)
"Sin" isnt a thing (in math)

These functions reed an argument.

