Feb. 27 Math 2254H sec 015H Spring 2015

Section 10.2: Calculus with Parametric Curves

Length of a Curve If a curve y = f(x) is traced out for $a \le x \le b$, the length of the curve is

$$L = \int_{a}^{b} ds$$
 where $ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$.

Recall that $ds^2 = dx^2 + dy^2$. Hence we can write ds in terms of dt when x = f(t) and y = g(t).

$$ds^{2} = dx^{2} + dy^{2} = \left[(dx)^{2} + (dy)^{2} \right] \cdot \left(\frac{dt}{dt} \right)$$
$$ds^{2} = \left[\left(\frac{dx}{dt} \right)^{2} + \left(\frac{dy}{dt} \right)^{2} \right] dt^{2}$$
$$ds = \sqrt{\left(\frac{dx}{dt} \right)^{2} + \left(\frac{dy}{dt} \right)^{2}} \quad dt$$

イロト イポト イヨト イヨト

Length of a Parametric Curve

The length of the curve, traversed once, with parametric representation

$$oldsymbol{x} = f(t), \hspace{1em} oldsymbol{y} = oldsymbol{g}(t), \hspace{1em} ext{for} \hspace{1em} lpha \leq t \leq eta$$

is given by

$$L = \int_{\alpha}^{\beta} ds = \int_{\alpha}^{\beta} \sqrt{\left(f'(t)\right)^2 + \left(g'(t)\right)^2} dt$$

Example

Find the length of the curve with parametric equations

$$x = \frac{t^2}{2} - \ln t, \quad y = 2t + 1, \quad 1 \le t \le 2$$

$$x'(t) = t - \frac{1}{t}$$
 $y'(t) = 2$

$$(x')^{2} + (y')^{2} = (t - \frac{1}{t})^{2} + 2^{2}$$

= $t^{2} - 2 + \frac{1}{t^{2}} + 4$
= $t^{2} + 2 + \frac{1}{t^{2}} = (t + \frac{1}{t})^{2}$
$$ds = \sqrt{(x')^{2} + (y')^{2}} \quad dt = \sqrt{(t + \frac{1}{t})^{2}} \quad dt$$

February 27, 2015 3 / 44

$$L = \int_{1}^{2} \sqrt{(t+\frac{1}{2})^{2}} dt = \int_{1}^{2} |t+\frac{1}{2}| dt$$

$$= \int_{1}^{2} (t + \frac{1}{4}) dt$$

Since $t + \frac{1}{4} > 0$
for $1 \le t \le 2$
$$= \frac{t^{2}}{2} + \ln|t| \Big|_{1}^{2}$$

$$=\frac{2^{2}}{2}+\int_{W}|z|-(\frac{1}{2}+\int_{W}|1|)$$

February 27, 2015 4 / 44

◆□ > ◆□ > ◆豆 > ◆豆 > □ = の < ⊙

()

$$= 2 + \ln 2 - \frac{1}{2} = \frac{3}{2} + \ln 2$$

Section 10.3: Polar Coordinates

Given a point in the plane, we can completely characterize it (relative to an origin) with an ordered pair

Figure: Note the correct notation is (distance first, angle second).

• • • • • • • • • • • • •

Connecting Polar to Rectangular Coordinates

イロト イポト イヨト イヨト

Negative Values of r

Converting between Coordinate Systems

The coordinates (x, y) are called **rectangular** or **Cartesian**¹ coordinates.

$$x = r \cos \theta, \quad y = r \sin \theta$$

$$x^2 + y^2 = r^2$$
, $\tan \theta = \frac{y}{x}$ for $x \neq 0$

If x = 0, then $\theta = \frac{\pi}{2}$ or $\theta = -\frac{\pi}{2}$ —of course any co-terminal θ may be used.

¹Named in honor of René Descartes, the *father* of Analytic Geometry. February 27, 2015 11/44

Examples

Express the Cartesian point in polar coordinates. (Choose r > 0.) (a) (1, -1)

<ロト <回 > < 回 > < 回 > < 回 > … 回

(b) (-1, 1)

(日)

(c)
$$(-3\sqrt{3}, -3)$$

 $r^{2} = \chi^{2} + \eta^{2} = (-3\sqrt{3})^{2} + (-3)^{2} = 27 + 9$
 $= 36$
 $r = 6$
 $r = 6$
 $r = 6$
 $r = 6$
 $r = \frac{1}{2} = \frac{1}{23}$
 $r = \frac{1}{23} = \frac{1}{23}$
 $r =$

◆□ → ◆□ → ◆三 → ◆三 → ◆◎ → ◆□ →

()

(d) (-2,7)		
. 17	r ² = (-2) ² + 2 ² = 4+ 49+	- 53
• 7	1= 153	
	$\tan 0 = \frac{y}{x} = -\frac{1}{z}$	ton" (-7)
Jues II	$\Theta = \operatorname{ten}'\left(\frac{-2}{2}\right) + \pi$	
	(r,0)= (J53, ton'(7)	+ +)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Polar Graphs

Functions in polar coordinates generally appear in the form²

 $r = f(\theta).$

Special Cases: Determine the nature of the graph of the equation in polar coordinates

(a)
$$r = 2$$
,
(b) $\theta = \frac{\pi}{4}$
Circl of radius 2
Contened θ the
Origin.
 $x^{2}+y^{2}=(^{2} \Rightarrow x^{2}+y^{2}=2^{2})$
The the analogy to function of the form $k = f(x)$
(b) $\theta = \frac{\pi}{4}$
 $4S^{\circ}$ line
 $\tan \theta = \frac{5}{x}$
 $\frac{5}{x} = \tan \left(\frac{\pi}{4}\right) = 1$
 $3 = x$

February 27, 2015 16 / 44

²Note the analogy to function of the form y

Polar Graphs

Evaluate the function expressed in polar coordinates. Plot its graph by converting the equation to Cartesian coordinates.

$$r = 4 \sin \theta$$

$$\begin{aligned} x = r (us0) \\ y = r (us0) \\ x^2 + y^2 = r^2 \\ t_{en}0 = \frac{y_{x}}{x} \\ x \neq 0 \end{aligned} \qquad \begin{aligned} x^2 + y^2 - 4y = 0 \\ x^2 + y^2 - 4y = 4 \end{aligned}$$

б

フ ×

Polar Graphs

Converting to Cartesian coordinates isn't always useful (for graphing). Convert the following to Cartesian coordinates.

 $r = 1 + \cos \theta$

$$X^{4} + Zx^{2}y^{2} + y^{4} - Zx^{3} - 2xy^{2} + y^{2} = 0$$

$$X^{4} + Zx^{2}y^{2} + y^{4} - Zx^{3} - 2xy^{2} - y^{2} = 0$$

Do we know what the graph should look like based on this ? ! ?

<ロ> <四> <四> <四> <四> <四</p>

()

