Feb. 27 Math 2254H sec 015H Spring 2015

Section 10.2: Calculus with Parametric Curves

Length of a Curve If a curve $y=f(x)$ is traced out for $a \leq x \leq b$, the length of the curve is

$$
L=\int_{a}^{b} d s \text { where } d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x .
$$

Recall that $d s^{2}=d x^{2}+d y^{2}$. Hence we can write $d s$ in terms of $d t$ when $x=f(t)$ and $y=g(t)$.

$$
\begin{gathered}
d s^{2}=d x^{2}+d y^{2}=\left[(d x)^{2}+(d y)^{2}\right]\left(\frac{d t}{d t}\right)^{2} \\
d s^{2}=\left[\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right] d t^{2} \\
d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{gathered}
$$

Length of a Parametric Curve

The length of the curve, traversed once, with parametric representation

$$
x=f(t), \quad y=g(t), \quad \text { for } \quad \alpha \leq t \leq \beta
$$

is given by

$$
L=\int_{\alpha}^{\beta} d s=\int_{\alpha}^{\beta} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d t
$$

Example
Find the length of the curve with parametric equations

$$
\begin{aligned}
x= & \frac{t^{2}}{2}-\ln t, \quad y=2 t+1, \quad 1 \leq t \leq 2 \\
x^{\prime}(t)=t & -\frac{1}{t} \quad y^{\prime}(t)=2 \\
\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2} & =\left(t-\frac{1}{t}\right)^{2}+2^{2} \\
& =t^{2}-2+\frac{1}{t^{2}}+4 \\
& =t^{2}+2+\frac{1}{t^{2}} \quad=\left(t+\frac{1}{t}\right)^{2} \\
d s & =\sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} d t=\sqrt{\left(t+\frac{1}{t}\right)^{2}} d t
\end{aligned}
$$

$$
\begin{aligned}
& L=\int_{1}^{2} \sqrt{\left(t+\frac{1}{t}\right)^{2}} d t=\int_{1}^{2}\left|t+\frac{1}{t}\right| d t \\
&=\int_{1}^{2}\left(t+\frac{1}{t}\right) d t \quad \text { for } \quad 1 \leq t \leq 2 \\
&=\frac{t^{2}}{2}+\left.\ln |t|\right|_{1} ^{2} \\
&=\frac{2^{2}}{2}+\ln |2|-\left(\frac{1}{2}>0\right.
\end{aligned}
$$

$$
=2+\ln 2-\frac{1}{2}=\frac{3}{2}+\ln 2
$$

Section 10.3: Polar Coordinates

Given a point in the plane, we can completely characterize it (relative to an origin) with an ordered pair

$$
(x, y)
$$

Pole, Polar Axis, Polar Coordinates

Figure: Note the correct notation is (distance first, angle second).

Connecting Polar to Rectangular Coordinates

Plot $\left(\sqrt{2}, \frac{3 \pi}{4}\right)$ and $\left(2,-\frac{2 \pi}{3}\right)$

$$
\begin{gathered}
x=\sqrt{2} \cos \left(\frac{3 \pi}{4}\right)=\frac{-\sqrt{2}}{\sqrt{2}}=-1 \\
y=\sqrt{2} \sin \left(\frac{3 \pi}{4}\right)=\frac{\sqrt{2}}{\sqrt{2}}=1 \\
(x, y)=(-1,1)
\end{gathered}
$$

Negative Values of r

If $r>0$, then the point $(-r, \theta)=(r, \theta+\pi)$. Plot the points $\quad\left(-\sqrt{2}, \frac{3 \pi}{4}\right)$, and $\left(-2,-\frac{2 \pi}{3}\right)$.

Converting between Coordinate Systems

The coordinates (x, y) are called rectangular or Cartesian ${ }^{1}$ coordinates.

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

$$
x^{2}+y^{2}=r^{2}, \quad \tan \theta=\frac{y}{x} \quad \text { for } x \neq 0
$$

If $x=0$, then $\theta=\frac{\pi}{2}$ or $\theta=-\frac{\pi}{2}$-of course any co-terminal θ may be used.
${ }^{1}$ Named in honor of René Descartes, the father of Analytic Geometry.

Examples
Express the Cartesian point in polar coordinates. (Choose $r>0$.)
(a) $(1,-1)$

$$
q^{\text {ad }}
$$

$$
\begin{aligned}
& r^{2}=1^{2}+(-1)^{2}=2 \\
& r=\sqrt{2} \\
& \tan \theta=\frac{y}{x}=\frac{-1}{1}=-1 \quad \tan ^{-1}(-1)=\frac{-\pi}{4} \\
& \theta=\frac{-\pi}{4} \\
& (r, \theta)=\left(\sqrt{2}, \frac{-\pi}{4}\right)
\end{aligned}
$$

(b) $(-1,1)$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2}=(-1)^{2}+1^{2}=2 \\
& r=\sqrt{2} \\
& \tan \theta=\frac{y}{x}=\frac{1}{-1}=-1 \quad \tan (-1)=-\frac{\pi}{4} \\
& \theta=\tan ^{-1}(-1)+\pi=\frac{3 \pi}{4} \\
& (r, \theta)=\left(\sqrt{2}, \frac{3 \pi}{4}\right)
\end{aligned}
$$

(c) $(-3 \sqrt{3},-3)$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2}=(-3 \sqrt{3})^{2}+(-3)^{2}=27+9 \\
& =36 \\
& r=6 \\
& \tan \theta=\frac{y}{x}=\frac{-3}{-3 \sqrt{3}}=\frac{1}{\sqrt{3}} \\
& \tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6} \quad \theta=\frac{\pi}{6}+\pi=\frac{7 \pi}{6} \\
& (r, \theta)=\left(6, \frac{7 \pi}{6}\right)
\end{aligned}
$$

(d) $(-2,7)$

$$
\begin{aligned}
& r^{2}=(-2)^{2}+7^{2}=4+49=53 \\
& r=\sqrt{53} \\
& \tan \theta=\frac{y}{x}=-\frac{7}{2} \quad \tan ^{-1}\left(-\frac{7}{2}\right) \\
& \theta=\tan ^{-1}\left(-\frac{7}{2}\right)+\pi
\end{aligned}
$$

$$
(r, \theta)=\left(\sqrt{53}, \tan ^{-1}\left(-\frac{7}{2}\right)+\pi\right)
$$

Polar Graphs
Functions in polar coordinates generally appear in the form ${ }^{2}$

$$
r=f(\theta)
$$

Special Cases: Determine the nature of the graph of the equation in polar coordinates
(a) $r=2$,
(b) $\quad \theta=\frac{\pi}{4}$
circe of radius 2
centered C the
origin.

$$
x^{2}+y^{2}=r^{2} \Rightarrow x^{2}+y^{2}=z^{2}
$$

$$
\begin{aligned}
& 45^{\circ} \text { line } \\
& \tan \theta=\frac{y}{x} \\
& \frac{y}{x}=\tan \left(\frac{\pi}{4}\right)=1 \\
& y=x
\end{aligned}
$$

${ }^{2}$ Note the analogy to function of the form $y=f(x)$

Polar Graphs
Evaluate the function expressed in polar coordinates. Plot its graph by converting the equation to Cartesian coordinates.

$$
\begin{array}{rr}
r=4 \sin \theta \\
x=r \cos \theta & r^{2}=4 r \sin \theta \\
y=r \sin \theta & x^{2}+y^{2}=4 y \\
x^{2}+y^{2}=r^{2} & \\
\tan \theta=\frac{y}{x} & x^{2}+y^{2}-4 y=0 \\
x \neq 0 & x^{2}+y^{2}-4 y+4=4
\end{array}
$$

$$
x^{2}+(y-2)^{2}=2^{2}
$$

Circle of radius 2 contend © $(0,2)$.

Polar Graphs
Converting to Cartesian coordinates isn't always useful (for graphing).
Convert the following to Cartesian coordinates.

$$
r=1+\cos \theta
$$

$$
\begin{aligned}
& r^{2}=r+r \cos \theta \\
& x^{2}+y^{2}=\sqrt{x^{2}+y^{2}}+x \\
& x^{2}+y^{2}-x=\sqrt{x^{2}+y^{2}} \\
& \left(x^{2}+y^{2}\right)^{2}-2 x\left(x^{2}+y^{2}\right)+x^{2}=x^{2}+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x^{4}+2 x^{2} y^{2}+y^{4}-2 x^{3}-2 x y^{2}+x^{2}=x^{2}+y^{2} \\
& x^{4}+2 x^{2} y^{2}+y^{4}-2 x^{3}-2 x y^{2}-y^{2}=0
\end{aligned}
$$

Do we know what the graph should look like based on this?!?

A plot of the cardioid $r=1+\cos \theta$

