## February 27 Math 2306 sec. 53 Spring 2019

#### **Section 8: Homogeneous Equations with Constant Coefficients**

We consider a second order, linear, homogeneous equation with constant coefficients

$$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0.$$

We found that  $y = e^{mx}$  is a solution provided m is a solution to the equation

$$am^2 + bm + c = 0$$

called the characteristic (or auxiliary) equation.



#### Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

There are three cases.

**Case I:** There are two distinct roots,  $m_1$  and  $m_2$ . The two solutions are

$$y_1 = e^{m_1 x}$$
 and  $y_2 = e^{m_2 x}$ .

The general solution is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$
.



#### Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

**Case II:** There is one repeated real root *m*. The two solutions are

$$y_1 = e^{mx}$$
 and  $y_2 = xe^{mx}$ .

The general solution is

$$y=c_1e^{mx}+c_2xe^{mx}.$$

#### Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

**Case III:** There is a complex conjugate pair of roots  $m = \alpha \pm i\beta$  where  $\alpha$  and  $\beta$  are real numbers and  $\beta > 0$ . The two solutions are

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and  $y_2 = e^{\alpha x} \sin(\beta x)$ .

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

#### Example

Solve the ODE

$$\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0$$
Characteristic equation  $m^2 + 4m + 6 = 0$ 
Complete the square  $m^2 + 4m + 4 - 4 + 6 = 0$ 

$$(m+2)^2 + 2 = 0$$

$$(m+2)^2 = -2$$

$$m+2 = \pm \sqrt{-2} = \pm \sqrt{2} i$$

$$m = -2 \pm \sqrt{2} i$$

$$m = -2 \pm \sqrt{2} i$$

$$m = -2 \pm \sqrt{2} i$$

February 21, 2019 5 / 45

$$x_1 = e^{-2t} C_{ss}(\sqrt{2}t)$$
,  $x_2 = e^{-2t} S_{in}(\sqrt{2}t)$ 

## Higer Order Linear Constant Coefficient ODEs

► The same approach applies. For an  $n^{th}$  order equation, we obtain an  $n^{th}$  degree polynomial.

► Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions  $e^{\alpha x} \cos(\beta x)$  and  $e^{\alpha x} \sin(\beta x)$  for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

# Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an  $n^{th}$  degree polynomial, m may be a root of multiplicity k where  $1 \le k \le n$ .
- ▶ If a real root *m* is repeated *k* times, we get *k* linearly independent solutions

$$e^{mx}$$
,  $xe^{mx}$ ,  $x^2e^{mx}$ , ...,  $x^{k-1}e^{mx}$ 

or in conjugate pairs cases 2k solutions

$$e^{\alpha x}\cos(\beta x), \ e^{\alpha x}\sin(\beta x), \ xe^{\alpha x}\cos(\beta x), \ xe^{\alpha x}\sin(\beta x), \dots,$$
  
 $x^{k-1}e^{\alpha x}\cos(\beta x), \ x^{k-1}e^{\alpha x}\sin(\beta x)$ 

#### Example

```
Solve the ODE
```

$$y'''-4y'=0$$

If 
$$y = e^{x}$$
,  $y' = me^{x}$ ,  $y'' = m^{2}e^{mx}$ ,  $y''' = m^{3}e^{mx}$   
 $m^{3}e^{mx} - 4(me^{mx}) = 0$   
 $e^{mx}(m^{3} - 4m) = 0$   
 $m^{3} - 4m = 0$   
 $m(m^{2} - 4) = 0$ 

$$M(w-5)(w+5) = 0$$

$$y_1 = e^{-2x}$$
 $y_2 = e^{-2x}$ 

The general solution is

 $y_3 = e^{-2x}$ 
 $y_4 = c_1 + c_2 e^{-2x} + c_3 e^{-2x}$ 

### Example

#### Solve the ODE

$$y'''-3y''+3y'-y=0$$

Characteristic equation  $m^3-3m^2+3m-1=0$ 
 $(m-1)^3=0$ 
 $m=1$ , repeased root

Our 3 solutions one

 $y_1=e^x$ ,  $y_2=xe^x$ ,  $y_3=x^2e^x$ 

February 21, 2019 11 / 45

#### Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- ► exponentials, e.s. g(x)= e<sup>mx</sup> m-constant
- ▶ sines and/or cosines, e.g. Sin(kx), Gs(kx) k-construct
- and products and sums of the above kinds of functions

Recall  $y = y_c + y_p$ , so we'll have to find both the complementary and the particular solutions!

## Motivating Example

#### Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

Note: Left side is constat coefficient, and glos=8x+1 which is a 1st degree polynomial. We'll guess that yp is also a 1st degree polynomial.

Set  $y_p = A \times + B$  with A, B constant Substitute to see if we can find correct A and B.



match coefficients

We found A and B that work. So

February 21, 2019 16 / 45

## The Method: Assume $y_p$ has the same **form** as g(x)

$$y'' - 4y' + 4y = 6e^{-3x}$$

Here  $g(x) = 6e^{-3x}$ , this is a constant times the exponential  $e^{-3x}$ . Will assume that  $y_p = Ae^{-3x}$  for some constant A.

$$y_{p}^{"} - 4y_{p}^{"} + 4y_{p} = 6e^{-3x}$$

$$9Ae^{-3x} - 4(-3Ae^{-3x}) + 4(Ae^{-3x}) = 6e^{-3x}$$

$$2SAe^{-3x} = 6e^{-3x}$$

$$2SA = 6e^{-3x}$$

This is true if 
$$2SA=6$$
, i.e.  $A=\frac{6}{2S}$ 

So 
$$y_e = \frac{6}{85} e^{-3x}$$