February 27 Math 2306 sec. 54 Spring 2019

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

We found that $y=e^{m x}$ is a solution provided m is a solution to the equation

$$
a m^{2}+b m+c=0
$$

called the characteristic (or auxiliary) equation.

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

There are three cases.

Case I: There are two distinct roots, m_{1} and m_{2}. The two solutions are

$$
y_{1}=e^{m_{1} x} \quad \text { and } \quad y_{2}=e^{m_{2} x} .
$$

The general solution is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} .
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

Case II: There is one repeated real root m. The two solutions are

$$
y_{1}=e^{m x} \quad \text { and } \quad y_{2}=x e^{m x} .
$$

The general solution is

$$
y=c_{1} e^{m x}+c_{2} x e^{m x}
$$

Auxiliary a.k.a. Characteristic Equation

$$
a m^{2}+b m+c=0
$$

Case III: There is a complex conjugate pair of roots $m=\alpha \pm i \beta$ where α and β are real numbers and $\beta>0$. The two solutions are

$$
y_{1}=e^{\alpha x} \cos (\beta x) \quad \text { and } \quad y_{2}=e^{\alpha x} \sin (\beta x)
$$

The general solution is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Example
Solve the ODE

$$
\frac{d^{2} x}{d t^{2}}+4 \frac{d x}{d t}+6 x=0
$$

Charactaistic equation: $\quad m^{2}+4 m+6=0$
complete the square $m^{2}+4 m+4-4+6=0$

$$
m=\alpha \pm i \beta
$$

$$
\begin{aligned}
& (m+2)^{2}+2=0 \\
& (m+2)^{2}=-2 \\
& m+2= \pm \sqrt{-2}= \pm \sqrt{2} i \\
& m=-2 \pm \sqrt{2} i
\end{aligned}
$$

$$
\alpha=-2 \text { and } \beta=\sqrt{2}
$$

$$
\begin{aligned}
& y_{1}=e^{\alpha x} \cos (\beta x), y_{2}=e^{\alpha x} \sin (\beta x) \\
& x_{1}=e^{-2 t} \cos (\sqrt{2} t), x_{2}=e^{-2 t} \sin (\sqrt{2} t)
\end{aligned}
$$

The genera solution is

$$
x=c_{1} e^{-2 t} \cos (\sqrt{2} t)+c_{2} e^{-2 t} \sin (\sqrt{2} t)
$$

Higer Order Linear Constant Coefficient ODEs

- The same approach applies. For an $n^{t h}$ order equation, we obtain an $n^{\text {th }}$ degree polynomial.
- Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions $e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x)$ for each pair of complex roots.
- It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an $n^{\text {th }}$ degree polynomial, m may be a root of multiplicity k where $1 \leq k \leq n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$
e^{m x}, \quad x e^{m x}, \quad x^{2} e^{m x}, \quad \ldots, \quad x^{k-1} e^{m x}
$$

or in conjugate pairs cases $2 k$ solutions

$$
\begin{gathered}
e^{\alpha x} \cos (\beta x), e^{\alpha x} \sin (\beta x), \quad x e^{\alpha x} \cos (\beta x), x e^{\alpha x} \sin (\beta x), \ldots \\
x^{k-1} e^{\alpha x} \cos (\beta x), x^{k-1} e^{\alpha x} \sin (\beta x)
\end{gathered}
$$

Example
Solve the ODE Set $y=e^{m x}, y^{\prime}=m e^{m x}, y^{\prime \prime}=m^{2} e^{m x}, y^{\prime \prime \prime}=m^{3} e^{m x}$ $y^{\prime \prime \prime}-4 y^{\prime}=0$

$$
\begin{aligned}
& m^{3} e^{m x}-4\left(m e^{m x}\right)=0 \quad y^{\prime \prime \prime}-4 y^{\prime} \\
& e^{m x}\left(m^{3}-4 m\right)=0 \\
& m^{3}-4 m=0 \\
& m\left(m^{2}-4\right)=0 \\
& m(m-2)(m+2)=0
\end{aligned}
$$

3 different read roots $m_{1}=0, m_{2}=2, m_{3}=-2$

3 solutions

$$
y_{1}=e^{0 x}=1, y_{2}=e^{2 x}, y_{3}=e^{-2 x}
$$

The genera solution is

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{-2 x}
$$

Example
Solve the ODE

$$
y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0
$$

Characteristic equation $m^{3}-3 m^{2}+3 m-1=0$

$$
(m-1)^{3}=0
$$

$n=1$, repeated root

The solutions are

$$
\begin{aligned}
y_{1} & =e^{x}, y_{2}=x e^{x}, y_{3}=x^{2} e^{x} \\
& e^{1 x}
\end{aligned}
$$

The genera solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}
$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials, e.g. $g(x)=e^{m x}$ for m consteat
- sines and/or cosines, e.g. $\sin (k x)$ or $\operatorname{Cos}(k x) k$-constant
- and products and sums of the above kinds of functions

Recall $y=y_{c}+y_{p}$, so we'll have to find both the complementary and the particular solutions!

Motivating Example
Find a particular solution of the ODE

$$
y^{\prime \prime}-4 y^{\prime}+4 y=8 x+1
$$

Note: The left is constant coefficient, and the right is a polynomial. Here $g(x)=8 x+1$ which is a lIst degree polynomid. Well guess that yo is also a $1^{\text {st }}$ degreupolynamid.

Set $y_{p}=A x+B$ for some constants A and B.

$$
y_{p}^{\prime}=A, y_{p}^{\prime \prime}=0
$$

$$
\begin{aligned}
& y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=8 x+1 \\
& 0-4(A)+4(A x+B)=8 x+1
\end{aligned}
$$

Match coefficients

$$
4 A x+(-4 A+4 B)=8 x+1
$$

Thisholds if

$$
\begin{aligned}
4 A & =8 \\
-4 A+4 B & =1
\end{aligned}
$$

This

$$
\begin{aligned}
A=2, & 4 B \\
=1+4 A=1+2 \cdot 4 & =9 \\
B & =\frac{9}{4}
\end{aligned}
$$

The particular solution is

$$
y_{p}=2 x+\frac{9}{4}
$$

The Method: Assume y_{p} has the same form as $g(x)$

$$
y^{\prime \prime}-4 y^{\prime}+4 y=6 e^{-3 x}
$$

Here $g(x)=6 e^{-3 x}$ which is a constant times on exponential with -3 in the exponent.
well set $y_{p}=A e^{-3 x}$ for some constant A.

$$
\begin{array}{r}
y_{p}^{\prime}=-3 A e^{-3 x}, y_{p}^{\prime \prime}=9 A e^{-3 x} \\
y_{p}^{\prime \prime}-4 y_{p}^{\prime}+4 y_{p}=6 e^{-3 x}
\end{array}
$$

$$
\begin{gathered}
9 A e^{-3 x}-4\left(-3 A e^{-3 x}\right)+4\left(A e^{-3 x}\right)=6 e^{-3 x} \\
25 A e^{-3 x}=6 e^{-3 x}
\end{gathered}
$$

Matahing gives $25 A=6$

$$
A=\frac{6}{25}
$$

So $y_{P}=\frac{6}{25} e^{-3 x}$

