February 27 Math 2306 sec. 54 Spring 2019

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0.$$

We found that $y = e^{mx}$ is a solution provided m is a solution to the equation

$$am^2 + bm + c = 0$$

イロト 不得 トイヨト イヨト ヨー ろくの February 21, 2019

1/45

called the characteristic (or auxiliary) equation.

Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

There are three cases.

Case I: There are two distinct roots, m_1 and m_2 . The two solutions are

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y=c_1e^{m_1x}+c_2e^{m_2x}.$$

February 21, 2019 2 / 45

イロト イポト イヨト イヨト

Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

Case II: There is one repeated real root m. The two solutions are

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y = c_1 e^{mx} + c_2 x e^{mx}$$

イロト イポト イヨト イヨト

February 21, 2019

Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

Case III: There is a complex conjugate pair of roots $m = \alpha \pm i\beta$ where α and β are real numbers and $\beta > 0$. The two solutions are

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

イロト イポト イヨト イヨト 一日

February 21, 2019

Solve the ODE $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0$ $m^{2} + 4m + 6 = 0$ Characteristic equation ; m2+4m+4-4 +6=0 Complete the square $(m+2)^2+2=0$ $(m+2)^2 = -2$ M+2 = 1 J-2 = 1 J2 U M = -Z ± JZ i d: - Z and B= JZ => (B> (B) m=d±ip æ February 21, 2019

 $y = e^{dx} G_{J}(p_{X})$, $y_{2} = e^{dx} S_{J}(p_{X})$

 $X_1 = \mathcal{C}_{Gr}(5\overline{z}t)$, $X_2 = \overline{\mathcal{C}}^{2t} Sin(5\overline{z}t)$

Higer Order Linear Constant Coefficient ODEs

The same approach applies. For an nth order equation, we obtain an nth degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx) for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an n^{th} degree polynomial, *m* may be a root of multiplicity *k* where $1 \le k \le n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

 $e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x),\ldots,$

$$x^{k-1}e^{\alpha x}\cos(\beta x), \ x^{k-1}e^{\alpha x}\sin(\beta x)$$

Example

set y= ex, y'= mex, y"= "ex, y"= mex Solve the ODE y'''-4y'=0 $m^{3}e^{mx} - 4(me^{mx}) = 0$ y"-45 $\mathcal{C}^{\mathsf{m} \mathsf{x}} \left(\mathsf{m}^3 - \mathsf{q} \mathsf{m} \right) = 0$ $m^{3} - 4m = 0$ $m(m^2-4)=0$ m(m-z)(m+z) = 0M1=0, M2=2, M3=-2 3 different real roots イロン イボン イヨン 一日 February 21, 2019 9/45

3 solutions

$$y_1 = e^{-2x}$$
, $y_2 = e^{2x}$, $y_3 = e^{2x}$
The general solution is
 $y_2 = c_1 + c_2 e^{-2x} + c_3 e^{-2x}$

February 21, 2019 10 / 45

◆□ → ◆□ → ◆三 → ◆三 → ◆◎ → ◆○ →

Solve the ODE

$$y'''-3y''+3y'-y=0$$

Charadenistic equation $m^3-3m^2+3m-1=0$
 $(m-1)^3=0$
 $m=1$, repeated root

The solutions are

$$y_1 = e^x$$
, $y_2 = xe^x$, $y_3 = x^2 e^x$
 e^{1x}

æ

The general solution is

$$y = C_1 \stackrel{\times}{e} + C_2 \times \stackrel{\times}{e} + C_3 \times \stackrel{Z}{e} \stackrel{\times}{e}$$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where *g* comes from the restricted classes of functions

- polynomials,
- exponentials, e.g. g(x) = e^x for a constrat
 sines and/or cosines, e.g. Sin (kx) or Gs(kx) k-constrat
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

イロト 不得 トイヨト イヨト ヨー ろくの

Motivating Example

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

Jole: The left is constant roefficient, and the right
is a polynomial. Here $g(x) = 8x + 1$ which is
a 1st degree polynomial. We'll guess that yp is
also a 1st degree polynomial.
Set up = Ax + B for some constants A and B.
 $yp' = A$, $yp'' = 0$

February 21, 2019 14 / 45

<ロト <回ト < 回ト < 回ト = 三日

$$y_{p}" - 4y_{p}" + 4y_{p} = 8x + 1$$

$$O - 4(A) + 4(Ax + B) = 8x + 1$$
Motel coefficients
$$4Ax + (-4A + 4B) = 8x + 1$$
Thisholds if
$$4A = 8$$

$$-4A + 4B = 1$$
Thus
$$A = 2, \quad 4B = 1 + 4A = 1 + 2 \cdot 4 = 9$$

$$B = \frac{2}{4}$$

$$B = \frac{2}{4}$$
(1)

The particular solution is

 $y_p = 2x + \frac{9}{4}$

The Method: Assume y_p has the same **form** as g(x)

$$y'' - 4y' + 4y = 6e^{-3x}$$

Here g(x) = 6 e which is a constant times on exponential with -3 in the exponent. We'll set yp= Ae for some constant A. y₀'= -3Ae^{-3×} , yp"= 9Ae^{-3×} $y_{e}^{"} - 4y_{e}^{'} + 4y_{e} = 6e^{-3x}$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

$$9 \text{ A } e^{3x} - 4 (-3 \text{ A } e^{3x}) + 4 (\text{ A } e^{3x}) = 6 e^{3x}$$

$$9 \text{ A } e^{3x} = 6 e^{3x}$$

$$12 \text{ A } e^{3x} = 6 e^{3x}$$

$$12 \text{ A } e^{3x} = 6$$

$$A = \frac{6}{25}$$

So
$$y_{P} = \frac{6}{25} e^{-3x}$$