February 27 Math 2306 sec. 60 Spring 2019

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$
a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0.
$$

We found that $y = e^{mx}$ is a solution provided m is a solution to the equation

$$
am^2 + bm + c = 0
$$

February 21, 2019 1/45

KET KALLA SI YE KE YA GA

called the characteristic (or auxiliary) equation.

Auxiliary a.k.a. Characteristic Equation

$$
am^2 + bm + c = 0
$$

There are three cases.

Case I: There are two distinct roots, m_1 and m_2 . The two solutions are

$$
y_1=e^{m_1x}\quad\text{and}\quad y_2=e^{m_2x}.
$$

The general solution is

$$
y = c_1 e^{m_1 x} + c_2 e^{m_2 x}.
$$

February 21, 2019 2/45

 Ω

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup A$

Auxiliary a.k.a. Characteristic Equation

$$
am^2 + bm + c = 0
$$

Case II: There is one repeated real root *m*. The two solutions are

$$
y_1=e^{mx} \quad \text{and} \quad y_2=xe^{mx}.
$$

The general solution is

$$
y=c_1e^{mx}+c_2xe^{mx}.
$$

February 21, 2019 3/45

 \equiv

 Ω

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Auxiliary a.k.a. Characteristic Equation

$$
am^2 + bm + c = 0
$$

Case III: There is a complex conjugate pair of roots $m = \alpha \pm i\beta$ where α and β are real numbers and $\beta > 0$. The two solutions are

$$
y_1 = e^{\alpha x} \cos(\beta x)
$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$
y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)
$$

February 21, 2019 4/45

 Ω

 $(0.123 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

Example

Solve the ODE *d* 2*x* $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0$ Charactershe egn: $m^2 + 4m + 6 = 0$ Let's complete the square $m^2+4m+4-4+6=0$ $(m+2)^{2} + 2 = 0$ $(m+2)^2 = -2$ $m + 2 = \pm \sqrt{-2} = \pm \sqrt{2} i$ $m = -2 \pm \sqrt{2}$ C $q = -2$ and $\beta = \sqrt{2}$ $m = 2 \pm 3i$ case KEX E DAG February 21, 2019 5/45

 $y_1 = e^{dx} cos(\beta x)$, $y_2 = e^{dx} sin(\beta x)$ $x_i = e^{-2t} cos(\sqrt{2}t)$, $x_i = e^{-2t} sin(\sqrt{2}t)$ The general solution is $x = c_1 e^{-2t}$
 $s(\overline{r}t) + c_2 e^{-2t}$ Sin ($\overline{r}t$)

Higer Order Linear Constant Coefficient ODEs

▶ The same approach applies. For an *nth* order equation, we obtain an *n th* degree polynomial.

 \triangleright Complex roots must appear in conjugate pairs (due to real $\mathsf{coefficients}$) giving a pair of solutions $e^{\alpha x}\cos(\beta x)$ and $e^{\alpha x}\sin(\beta x)$ for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

February 21, 2019 7 / 45

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- ► For an *nth* degree polynomial, *m* may be a root of multiplicity *k* where $1 \leq k \leq n$.
- If a real root m is repeated k times, we get k linearly independent solutions

$$
e^{mx}
$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2*k* solutions

$$
e^{\alpha x} \cos(\beta x), e^{\alpha x} \sin(\beta x), xe^{\alpha x} \cos(\beta x), xe^{\alpha x} \sin(\beta x),...,
$$

 $x^{k-1}e^{\alpha x} \cos(\beta x), x^{k-1}e^{\alpha x} \sin(\beta x)$

February 21, 2019 8 / 45

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Example

Solve the ODE $y = e^{mx}$, $y' = me^{mx}$, $y'' = me^{mx}$, $y'' = me^{mx}$ *y*‴−4*y*′ = 0 m^3e^{mx} - $4me^{mx}$ = 0 $y''' - 4y' = 0$ $e^{mx}(m^{3}-4m)=0$ We have a solution provided m³-4m = 0 $m(m^{2}-4)=0$ Find the roots $M(m-2)(m+2) = 0$ $M_1 = 0$, $M_2 = 2$, $M_3 = -2$ 3 distinct real nots イロト イ部 トイ君 トイ君 トッ君

February 21, 2019 9/45

 Ω

3 solutions
$$
y_i = e^{0x} = 1
$$
 $y_2 = e^{2x}$, $y_3 = e^{2x}$
The general solution is
 $y = C_1 + C_2 e + C_3 e^{2x}$

K ロ > K 御 > K 君 > K 君 > 「君」 の Q (V) February 21, 2019 10 / 45

Example

Solve the ODE

Characteristic equation *y*^{′′′}−3*y*′[′]+3*y*′−*y* = 0 $m^3 - 3m^2 + 3m - 1 = 0$ $(m - 1)^3 = Q$ Perfect cube m=1 repeated w/meetipricity 3 Le get three Dinearly independent solutions y_1 ² e y_2 2 x e y_3 = x^2e^x $e^{i\hat{x}}$ K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 〉 Ω

February 21, 2019 11 / 45

The general solution is $y = C_1 e^{x} + C_2 x e^{x} + C_3 x e^{x}$

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_ny^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = g(x)
$$

where *g* comes from the restricted classes of functions

- \blacktriangleright polynomials,
- \triangleright exponentials, e^{mx} for constant m
- Sines and/or cosines, $sin(kx)$ or $c_0(kx)$
- \triangleright and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

February 21, 2019 13/45

KET KALLA SI YE KE YA GA

Motivating Example

Find a particular solution of the ODE

$$
y'' - 4y' + 4y = 8x + 1
$$
\n
$$
g(x) = 8x + 1
$$

February 21, 2019 14 / 45

 299

$$
y_{p}'' - 4y_{p}' + 4y_{p} = 8x + 1
$$

\nO - 4 (A) + 4 (A×+8) = 8x + 1
\nWe match coefficients to find A and B.
\n
$$
\frac{4A}{\pm}x + (-\frac{4A+4B}{\pm}) = \frac{8x + 1}{\pm}
$$

\nThis regions
\n
$$
4A = 8
$$

\n
$$
-4A + 4B = 1
$$

\n
$$
4A = 8
$$

\n
$$
4B = 1
$$

\n
$$
4B = 1
$$

\n
$$
4B = 1
$$

\n
$$
4B = 1 + 4A = 1 + 4(2) = 9
$$

February 21, 2019 15 / 45

K ロ ト K 個 ト K 差 ト K 差 ト … 差 299 February 21, 2019 16 / 45 The Method: Assume y_p has the same **form** as $g(x)$

$$
y'' - 4y' + 4y = 6e^{-3x}
$$
\n
$$
g(x) = 6e^{-3x}
$$

K ロ ▶ K 個 ▶ K ミ ▶ K ミ ▶ - ' 큰' - K 9 Q @ February 21, 2019 17 / 45

 $9Ae^{3x} + 12Ae^{3x} + 4Ae^{3x} = 6e^{3x}$

$$
35 \text{ A}e^{-3x} = 6e^{-3x}
$$

Ans is true if $A = \frac{6}{25}$

The path!
$$
\ln \ln \ln \ln \frac{1}{3}
$$

 $y_{e} = \frac{6}{35}e^{-3x}$

K ロ X x 伊 X x ミ X x モ X → ミ → つ Q Q → February 21, 2019 19 / 45