February 27 Math 2306 sec. 60 Spring 2019

Section 8: Homogeneous Equations with Constant Coefficients

We consider a second order, linear, homogeneous equation with constant coefficients

$$a\frac{d^2y}{dx^2}+b\frac{dy}{dx}+cy=0.$$

We found that $y = e^{mx}$ is a solution provided m is a solution to the equation

$$am^2 + bm + c = 0$$

イロト 不得 トイヨト イヨト ヨー ろくの February 21, 2019

1/45

called the characteristic (or auxiliary) equation.

Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

There are three cases.

Case I: There are two distinct roots, m_1 and m_2 . The two solutions are

$$y_1 = e^{m_1 x}$$
 and $y_2 = e^{m_2 x}$.

The general solution is

$$y=c_1e^{m_1x}+c_2e^{m_2x}.$$

February 21, 2019 2 / 45

イロト イポト イヨト イヨト

Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

Case II: There is one repeated real root m. The two solutions are

$$y_1 = e^{mx}$$
 and $y_2 = xe^{mx}$.

The general solution is

$$y = c_1 e^{mx} + c_2 x e^{mx}$$

イロト イポト イヨト イヨト

February 21, 2019

3/45

Auxiliary a.k.a. Characteristic Equation

$$am^2 + bm + c = 0$$

Case III: There is a complex conjugate pair of roots $m = \alpha \pm i\beta$ where α and β are real numbers and $\beta > 0$. The two solutions are

$$y_1 = e^{\alpha x} \cos(\beta x)$$
 and $y_2 = e^{\alpha x} \sin(\beta x)$.

The general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

イロト イポト イヨト イヨト 一日

February 21, 2019

4/45

Example

Solve the ODE $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 6x = 0$ Charadenstic egn: m2+4m+6=0 let's complete the square m2+4m+4-4+6=0 $(m+2)^{2}+2=0$ $(m+2)^2 = -7$ $M + 2 = \pm \sqrt{-2} = \pm \sqrt{2} i$ M=-Z±JZ (q=-2 and B=JZ m=g±ßi case February 21, 2019

5/45

 $y_1 = e^{dx} \cos(\beta x)$, $y_2 = e^{dx} \sin(\beta x)$ $X_1 = e^{2t} G_{ST}(\overline{J_2} t)$, $X_2 = e^{2t} S_{ST}(\overline{J_2} t)$ The general solution is $X = C, e^{-2t} G_{s}(J_{2}t) + (ze^{-2t} Sin(J_{2}t))$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Higer Order Linear Constant Coefficient ODEs

The same approach applies. For an nth order equation, we obtain an nth degree polynomial.

Complex roots must appear in conjugate pairs (due to real coefficients) giving a pair of solutions e^{αx} cos(βx) and e^{αx} sin(βx) for each pair of complex roots.

It may require a computer algebra system to find the roots for a high degree polynomial.

Higer Order Linear Constant Coefficient ODEs: Repeated roots.

- For an nth degree polynomial, m may be a root of multiplicity k where 1 ≤ k ≤ n.
- If a real root m is repeated k times, we get k linearly independent solutions

$$e^{mx}$$
, xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$

or in conjugate pairs cases 2k solutions

 $e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x), xe^{\alpha x}\cos(\beta x), xe^{\alpha x}\sin(\beta x),\ldots,$

$$x^{k-1}e^{\alpha x}\cos(\beta x), \ x^{k-1}e^{\alpha x}\sin(\beta x)$$

Example

Solve the ODE y: ex, y'= me", y''= m2e", y''= m3e"x y'''-4y'=0 $m^3 e^{mx} - 4me^{mx} = 0$ y'''-4y'=0 $e^{mx}(m^3 - 4m) = 0$ we have a solution provided m³-4m=0 m (m2-4)=0 Find the roots M(M-2)(M+2)=0 $m_1 = 0$, $m_2 = 2$, $m_3 = -2$ 2 distinct real nots

February 21, 2019 9 / 45

▲口 医 ▲圖 医 ▲ 国 医 一 国 -

3 solutions
$$y_1 = e^{0x} = 1$$
 $y_2 = e^{2x}$, $y_3 = e^{2x}$
The general solution is
 $y_1 = c_1 + c_2 e^{2x} + c_3 e^{-2x}$

Example

Solve the ODE

Characteristic equation y'''-3y''+3y'-y=0 $m^{3} - 3m^{2} + 3m - 1 = 0$ $(m - 1)^3 = 0$ perfect cube m=1 repeated w/ meetiplicity 3 Le get three lineerly independent solutions $y_1 = e^{x}$, $y_2 = xe^{x}$, $y_3 = x^2 e^{x}$ _م1× 《曰》《聞》《臣》《臣》 [] 臣,

February 21, 2019 11 / 45

The general solution is $y = C_1 \stackrel{\times}{e} + C_2 \times \stackrel{\times}{e} + C_3 \times \stackrel{\times}{e}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

where g comes from the restricted classes of functions

- polynomials,
- ► exponentials, e^{mx} for constant M
- ► sines and/or cosines, sin (k, ∞) or Cos (k, x)
- and products and sums of the above kinds of functions

Recall $y = y_c + y_p$, so we'll have to find both the complementary and the particular solutions!

イロト 不得 トイヨト イヨト ヨー ろくの

Motivating Example

Find a particular solution of the ODE

$$y'' - 4y' + 4y = 8x + 1$$

 $g(x) = 8x + 1$ a 1st degree polynomicl. (Note the left
side is constant coefficient.).
We guess that y_p is a 1st degree polynomial
like g . Let's set
 $y_p = Ax + B$ for constants A and B .
Substitute into the OD E
 $y_p' = A$ and $y_p'' = O$

February 21, 2019 14 / 45

$$y_{p}^{"} - 4y_{p}^{'} + 4y_{p} = 8x + 1$$

$$O - 4(A) + 4(Ax+B) = 8x + 1$$
We match coefficients to find A and B.
$$\frac{4A \times + (-4A + 4B) = 8x + 1}{4A \times + (-4A + 4B) = 8x + 1}$$
This requires
$$4A = 8 \implies x^{2}$$

$$-4A + 4B = 1$$

$$4A = 8 \implies A = 2, \quad 4B = 1 + 4(2) = 9$$

$$4A = 8 \implies A = 2, \quad 4B = 1 + 4(2) = 9$$

February 21, 2019 15/45

a

<ロ> <四> <四> <三</td>

The Method: Assume y_p has the same **form** as g(x)

$$y'' - 4y' + 4y = 6e^{-3x}$$

$$g(x) = 6e^{3x} \text{ is an exponential with -3x in}$$
the exponent. We're going to leave the -3
in the exponent. We'll set

$$y_{P} = Ae^{-3x} \text{ where } A \text{ is onr}$$

$$wdetermined \text{ coefficient.}$$

$$y_{P}^{\dagger} = -3Ae^{-3x}$$

$$y_{P}^{\dagger} = -4y_{P}^{\dagger} + 4y_{P} = 6e^{-3x}$$

$$y_{P}^{\dagger} = -3Ae^{-3x}$$

$$y_{P}^{\dagger} = -4y_{P}^{\dagger} + 4y_{P} = 6e^{-3x}$$

February 21, 2019 17 / 45

<ロ> <四> <四> <四> <四> <四</p>

 $9Ae^{-3x} + 12Ae^{-3x} + 4Ae^{-3x} = 6e^{-3x}$

$$25 A e^{-3x} = 6 e^{-3x}$$

This is true if $A = \frac{6}{25}$

The particular solution is
$$y_p = \frac{6}{25} e^{-3x}$$

February 21, 2019 19 / 45