February 27 Math 3260 sec. 55 Spring 2018

Section 3.1: Introduction to Determinants

We sought a defiinition of the determinant of a 3×3 matrix with the property that the determinant being zero or nonzero corrolated to the matrix being singular or nonsingular. For

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

we defined
$\operatorname{Det}(A)=a_{11} \operatorname{det}\left[\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Definitions: Minors and Cofactors

Let $n \geq 2$. For an $n \times n$ matrix A, let $A_{i j}$ denote the $(n-1) \times(n-1)$ matrix obtained from A by deleting the $i^{\text {th }}$ row and the $j^{\text {th }}$ column of A.

Definition: The $i, j^{t h}$ minor of the $n \times n$ matrix A is the number

$$
M_{i j}=\operatorname{det}\left(A_{i j}\right)
$$

Definition: Let A be an $n \times n$ matrix with $n \geq 2$. The $i, j^{\text {th }}$ cofactor of A is the number

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

Observation:

Comparison with the determinant of the 3×3 matrix A, we found a connection to cofactors

$$
\begin{aligned}
\operatorname{Det}(A) & =a_{11} \operatorname{det}\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]-a_{12} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right]+a_{13} \operatorname{det}\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right] \\
& =a_{11} C_{11}+a_{12} c_{12}+a_{13} C_{13}
\end{aligned}
$$

Definition: Determinant

For $n \geq 2$, the determinant of the $n \times n$ matrix $A=\left[a_{i j}\right]$ is the number

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} M_{1 j}
\end{aligned}
$$

(Well call such a sum a cofactor expansion.)

Example: Evaluate the determinant

$$
A=\left[\begin{array}{ccc}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right] \quad \begin{aligned}
& \operatorname{det}(A)=a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13} \\
& C_{11}=(-1)^{1+1} M_{11}=(-1)^{2}\left|\begin{array}{cc}
1 & 2 \\
0 & 6
\end{array}\right|=6 \\
& C_{12}=(-1)^{1+2} M_{12}=(-1)^{3}\left|\begin{array}{cc}
-2 & 2 \\
3 & 6
\end{array}\right|=18 \\
& C_{13}=(-1)^{1+3} M_{13}=(-1)^{4}\left|\begin{array}{cc}
-2 & 1 \\
3 & 0
\end{array}\right|=-3 \\
& \operatorname{det}(A)=-1 \cdot 6+3(18)+0(-3)=48
\end{aligned}
$$

Theorem:

The determinant of an $n \times n$ matrix can be computed by cofactor expansion across any row or down any column.

Example: Find the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
-1 & 3 & 4 & 0 \\
0 & 0 & -3 & 0 \\
-2 & 1 & 2 & 2 \\
3 & 0 & -1 & 6
\end{array}\right] \quad \begin{aligned}
& \text { we can use the zeros in row } 2 . \\
& \begin{array}{r}
A \text { contactor expansion across row } 2 \\
\operatorname{det}(A)=a_{21} C_{21}+a_{22} C_{22}+a_{23} C_{23}+a_{24} C_{24} \\
0^{\prime \prime} \\
0^{\prime \prime}
\end{array} \quad 0^{\prime \prime}
\end{aligned}
$$

$$
C_{23}=(-1)^{2+3} M_{23}=-\left|\begin{array}{ccc}
-1 & 3 & 0 \\
-2 & 1 & 2 \\
3 & 0 & 6
\end{array}\right|=-48 \quad \text { (from previous } \begin{gathered}
\text { slide) }
\end{gathered}
$$

$$
\operatorname{det}(A)=-3(-48)=144
$$

we could compute this toking on expansion down Column 4

$$
\operatorname{dt}(A)=a_{14} C_{14}+a_{24} C_{24}+a_{34} C_{34}+a_{44} C_{44}
$$

Triangular Matrices

Definition:

The $n \times n$ matrix $A=\left[a_{i j}\right]$ is said to be upper triangular if $a_{i j}=0$ for all $i>j$. It is said to be lower triangular if $a_{i j}=0$ for all $j>i$. A matrix that is both upper and lower triangular is diagonal.

Theorem: For $n \geq 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries. (i.e. if $A=\left[a_{i j}\right]$ is triangular, then $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$.)

Example: Evaluate the determinant of each matrix.

$$
A=\left[\begin{array}{ccccc}
-1 & 3 & 4 & 0 & 2 \\
0 & 2 & -3 & 0 & -4 \\
0 & 0 & 3 & 7 & 5 \\
0 & 0 & 0 & -4 & 6 \\
0 & 0 & 0 & 0 & 6
\end{array}\right] \quad \operatorname{det}(A)=-1(2)(3)(-4)(6)=144
$$

upper triangular

$$
A=\left[\begin{array}{cccc}
7 & 0 & 0 & 0 \\
3 & 6 & 0 & 0 \\
0 & -1 & 2 & 0 \\
4 & 2 & 2 & 2
\end{array}\right]
$$

$$
\operatorname{dt}(A)=7(6)(2)(2)=168
$$

Lower triangular

Section 3.2: Properties of Determinants

Theorem: Let A be an $n \times n$ matrix, and suppose the matrix B is obtained from A by performing a single elementary row operation ${ }^{1}$. Then
(i) If B is obtained by adding a multiple of a row of A to another row of A (row replacement), then

$$
\operatorname{det}(B)=\operatorname{det}(A)
$$

(ii) If B is obtained from A by swapping any pair of rows (row swap), then

$$
\operatorname{det}(B)=-\operatorname{det}(A)
$$

(iii) If B is obtained from A by scaling any row by the constant k (scaling), then

$$
\operatorname{det}(B)=k \operatorname{det}(A)
$$

[^0]Example: Compute the Determinant
$\left|\begin{array}{cccc}0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2\end{array}\right|$
weill do row operations to get an echelon form (upper triangular.) and kep track of my potential Changes to the detanin out.

Call the origind matrix A.
Do $R_{1} \leftrightarrow R_{2}$

$$
\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 3 & 6 & 2 \\
-2 & -5 & 4 & -2
\end{array}\right]
$$

$\frac{\text { Change }}{\text { O) Swap (-1) }}$
(3) replace nochenge
(3) replace nochange
(4) Swap
(-1)

$$
\begin{aligned}
& R_{1}+R_{4} \rightarrow R_{4} \\
& {\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 3 & 6 & 2 \\
0 & 0 & -3 & 1
\end{array}\right]} \\
& -3 R_{2}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & 0 & 5 \\
0 & 0 & -3 & 1
\end{array}\right]} \\
& R_{3} \Leftrightarrow R_{4}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & 5
\end{array}\right]} \\
& \frac{1}{5} R_{4} \rightarrow R_{4} \\
& B=\left[\begin{array}{cccc}
2 & 5 & -7 & 3 \\
0 & 1 & 2 & -1 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \operatorname{det}(B)=2 \cdot(1) \cdot(-3) \cdot 1
\end{aligned}
$$

Going back to $\operatorname{det}(A)$

$$
\begin{aligned}
& \operatorname{det}(B)=(-1) \cdot(-1) \cdot \frac{1}{5} \operatorname{dt}(A) \\
& \operatorname{det}(A)=5(-1)^{2} \operatorname{det}(B)=5(1)(-6)=-30
\end{aligned}
$$

Some Theorems:

Theorem: The $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Theorem: For $n \times n$ matrix $A, \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.

Theorem: For $n \times n$ matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Example
Show that if A is an $n \times n$ invertible matrix, then

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

$$
\text { Note } \begin{aligned}
A^{-1} A= & I \quad \operatorname{det}(I)=1 \\
\operatorname{det}\left(A^{-1} A\right) & =\operatorname{det}(I) \\
\operatorname{det}\left(A^{-1}\right) \operatorname{det}(A) & =1 \quad \operatorname{det}(A) \neq 0
\end{aligned}
$$

so $\quad \operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$

Example
Let A be an $n \times n$ matrix, and suppose there exists invertible matrix P such that

$$
B=P^{-1} A P . \leftarrow \text { called a }
$$ similarity

Show that

$$
\left.\begin{array}{rl}
\operatorname{det}(B)=\operatorname{det}\left(P^{-1} A P\right) & =\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A P) \\
& =\underbrace{\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A) \operatorname{det}(P)}_{\text {real number }} \\
& =\operatorname{det}(A) \underbrace{\operatorname{det}\left(P^{-1}\right) \operatorname{dt}}_{1^{\prime \prime}}(P) \quad \operatorname{dt}\left(P^{-1}\right)
\end{array}\right) \frac{1}{\operatorname{det}(P)}
$$

[^0]: "If "row" is replaced by "column" in any of the operations, the conclusions still follow.

