February 27 Math 3260 sec. 56 Spring 2018

Section 3.1: Introduction to Determinants

We sought a definition of the determinant of a 3×3 matrix with the property that the determinant being zero or nonzero corrolated to the matrix being singular or nonsingular. For

$$A = \left[egin{array}{cccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{array}
ight],$$

we defined

$$\mathsf{Det}(A) = a_{11}\mathsf{det} \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12}\mathsf{det} \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13}\mathsf{det} \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

February 23, 2018 1 / 67

Definitions: Minors and Cofactors

Let $n \ge 2$. For an $n \times n$ matrix A, let A_{ij} denote the $(n-1) \times (n-1)$ matrix obtained from A by deleting the i^{th} row and the i^{th} column of A.

Definition: The *i*, *j*th **minor** of the $n \times n$ matrix *A* is the number

 $M_{ii} = \det(A_{ii}).$

Definition: Let A be an $n \times n$ matrix with n > 2. The *i*, *i*th cofactor of A is the number

$$C_{ij}=(-1)^{i+j}M_{ij}.$$

February 23, 2018

2/67

Observation:

Comparison with the determinant of the 3 \times 3 matrix $\textbf{\textit{A}}$, we found a connection to cofactors

$$Det(A) = a_{11}det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12}det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13}det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$
$$= a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

February 23, 2018

э

3/67

Definition: Determinant

For $n \ge 2$, the **determinant** of the $n \times n$ matrix $A = [a_{ij}]$ is the number

$$det(A) = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$$
$$= \sum_{j=1}^{n} (-1)^{1+j} a_{1j}M_{1j}$$

イロト イポト イヨト イヨト

February 23, 2018

4/67

(Well call such a sum a cofactor expansion.)

Example: Evaluate the determinant

$$A = \begin{bmatrix} -1 & 3 & 0 \\ -2 & 1 & 2 \\ 3 & 0 & 6 \end{bmatrix} \qquad det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$
$$C_{11} = C_{11} + a_{12}C_{12} + a_{13}C_{13}$$
$$C_{11} = C_{11} + a_{12}C_{12} + a_{13}C_{13}$$
$$C_{11} = C_{12} + a_{13}C_{13} + a_{13}C_{13}$$
$$C_{12} = C_{12} + a_{13}C_{13} + a_{13}C_{13}$$
$$C_{13} = C_{11} + a_{12}C_{12} + a_{13}C_{13}$$
$$C_{13} = C_{11} + a_{12}C_{12} + a_{13}C_{13}$$
$$C_{13} = C_{11} + a_{12}C_{12} + a_{13}C_{13}$$
$$C_{13} = C_{11} + a_{12}C_{13} + a_{13}C_{13}$$

dt(A) = -1(6) + 3(18) = 48

February 23, 2018 5 / 67

- 34

イロト イポト イヨト イヨト

Theorem:

The determinant of an $n \times n$ matrix can be computed by cofactor expansion across any row or down any column.

Example: Find the determinant of the matrix

 $A = \begin{bmatrix} -1 & 3 & 4 & 0 \\ 0 & 0 & -3 & 0 \\ -2 & 1 & 2 & 2 \\ 3 & 0 & -1 & e \end{bmatrix} \quad \begin{array}{c} \text{We can do the correction exponsion} \\ \text{across row 2.} \end{array}$ $d_{A}(A) = Q_{21}C_{21} + Q_{22}C_{22} + Q_{23}C_{23} + Q_{24}C_{24}$ $\begin{pmatrix} z_{23} = (-1) \\ -2 & 1 & 2 \\ 3 & 0 & 6 \end{pmatrix} = (-1) \begin{pmatrix} 48 \\ -48 \end{pmatrix} = -48 \quad (from previous \\ slide)$ イロト イポト イヨト イヨト 二日

> February 23, 2018 6/67

det(A) = (-3) (-48) = 144

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 7 0 0 0 February 23, 2018 7 / 67

Triangular Matrices

The $n \times n$ matrix $A = [a_{ij}]$ is said to be **upper triangular** if $a_{ij} = 0$ for all i > j. It is said to be **lower triangular** if $a_{ij} = 0$ for all j > i. A matrix that is both upper and lower triangular is **diagonal**.

Theorem: For $n \ge 2$, the determinant of an $n \times n$ triangular matrix is the product of its diagonal entries. (i.e. if $A = [a_{ij}]$ is triangular, then $det(A) = a_{11}a_{22}\cdots a_{nn}$.)

Example: Evaluate the determinant of each matrix.

$$A = \begin{bmatrix} -1 & 3 & 4 & 0 & 2 \\ 0 & 2 & -3 & 0 & -4 \\ 0 & 0 & 3 & 7 & 5 \\ 0 & 0 & 0 & -4 & 6 \\ 0 & 0 & 0 & 0 & 6 \end{bmatrix}$$
Upper triesular

drt(A)=(-1)(2)(3)(-4)(6)=144

$$A = \begin{bmatrix} 7 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 0 & -1 & 2 & 0 \\ 4 & 2 & 2 & 2 \end{bmatrix}$$
Lower triangular

$$dut(A) = 7(6)(2)(2) = 168$$

February 23, 2018 9 / 67

イロト イポト イヨト イヨト 一日

Section 3.2: Properties of Determinants

Theorem: Let *A* be an $n \times n$ matrix, and suppose the matrix *B* is obtained from *A* by performing a single elementary row operation¹. Then

(i) If *B* is obtained by adding a multiple of a row of *A* to another row of *A* (row replacement), then

 $\det(B) = \det(A).$

(ii) If *B* is obtained from *A* by swapping any pair of rows (row swap) , then

$$\det(B) = -\det(A).$$

(iii) If *B* is obtained from *A* by scaling any row by the constant *k* (scaling), then

$$\det(B) = k \det(A).$$

 $^{^1}$ If "row" is replaced by "column" in any of the operations, the conclusions still follow $_\odot$

Example: Compute the Determinant

February 23, 2018 11 / 67

$$R_{1} + 1R_{4} \Rightarrow R_{4}$$

$$\begin{bmatrix} 2 & 5 & -7 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 1 \end{bmatrix}$$

$$\cdot 3R_{2} + R_{3} \Rightarrow R_{3}$$

$$\begin{bmatrix} 2 & 5 & -7 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -3 & 1 \end{bmatrix}$$

R3 C> Ry

$$B = \begin{cases} 2 & 5 & -7 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 0 & 5 \end{cases}$$

$$\frac{1}{5}R_{4} \neq R_{4}$$

$$R_{4}$$

P(B) = 5(1)(-3)(1) = -P

February 23, 2018 13 / 67

◆□> ◆圖> ◆理> ◆理> 「理

$det(B) = (-1) \cdot (-1) \cdot (\frac{1}{5}) dt(A)$

 $det(A) = 5(-1)^{2} det(B)$ = 5(1)(-6) = -30

Some Theorems:

Theorem: The $n \times n$ matrix *A* is invertible if and only if det(*A*) \neq 0.

Theorem: For $n \times n$ matrix A, det(A^T) =det(A).

Theorem: For $n \times n$ matrices *A* and *B*, det(*AB*) =det(*A*) det(*B*).

< □ → < □ → < 重 → < 重 → < 重 → February 23, 2018 16 / 67

Example

Show that if A is an $n \times n$ invertible matrix, then

$$det(A^{-1}) = \frac{1}{det(A)}.$$
Note $A^{'}A = I$ $dut(I) = 1$
 $dut(A^{'}A) = dut(I) = 1$
 $dut(A') dut(A) = 1$ $dut(A) \neq 0$

$$\Rightarrow$$
 $Lt(A') = \frac{1}{dut(A)}$

Example

Let *A* be an $n \times n$ matrix, and suppose there exists invertible matrix *P* such that

Show that

 $\det(B) = \det(A).$

$$dut(B) = dut(P'|AP) = dut(P') dut(AP)$$

$$= dut(P') dut(A) dut(P)$$

$$= dut(P') dut(A) dut(P)$$

$$= dut(P') dut(P) dut(A) dut(P') = \frac{1}{dut(P)}$$

$$= dut(A)$$

$$= dut(A)$$

$$= dut(A)$$

$$= dut(A)$$