February 26 MATH 1112 sec. 52 Spring 2020

Trigonometric Functions
 Graphs of Sine and Cosine Functions

Our goal is to graph functions of the form

$$
f(x)=a \sin (b x-c)+d \quad \text { or } \quad f(x)=a \cos (b x-c)+d
$$

- Amplitude $=|a|$
- Period $T=\frac{2 \pi}{b}$
- Phase shift (horizontal) is $\frac{|c|}{b}$ (right if $c>0$ and left if $c<0$)
- Vertical shift is d up if $d>0$ and down if $d<0$

Parent Plots

The period can be divided into four equal segments.
For the sine function $\quad x$-int $\rightarrow \max \rightarrow x$-int $\rightarrow \min \rightarrow x$-int

Parent Plots

The period can be divided into four equal segments.
For the cosine function $\max \rightarrow x$-int $\rightarrow \min \rightarrow x$-int $\rightarrow \max$

The Tangent

The function $\tan s=\frac{\sin s}{\cos s}$. Recall that

$$
\cos s=0 \quad \text { whenever } \quad s=\frac{m \pi}{2} \quad \text { for } \quad m= \pm 1, \pm 3, \pm 5, \ldots
$$

When $\cos s=0, \sin s$ is either 1 or -1 . Hence
Domain: The domain of the tangent function is all real number except odd multiples of $\pi / 2$. We can write this as

$$
\left\{s \left\lvert\, s \neq \frac{\pi}{2}+k \pi\right., k=0, \pm 1, \pm 2, \ldots\right\}
$$

Moreover, the graph of the tangent function has vertical asymptotes at each odd multiple of $\pi / 2$.

The Tangent

Range: The range of the tangent function is all real numbers.

Symmetry: The function $f(s)=\tan s$ is odd. That is

$$
f(-s)=\tan (-s)=-\tan s=-f(s) .
$$

Perodicity: The tangent function is periodic with fundamental period π. That is

$$
\tan (s+\pi)=\tan s \text { for all } s \text { in the domain. }
$$

Note: The period of the tangent function is π. This is different from the period of the sine and cosine.

The Tangent

A few key tangent values:

s	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\tan s$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	undef.

And due to symmetry

s	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0
$\tan s$	undef.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Here is an applet to plot two periods of the function $f(s)=\tan s$.
, GeoGebra Graph Applet: Tangent

Basic Plot $f(x)=\tan x$

Figure: Plot of several periods of $f(x)=\tan x$. Note that the interval between adjacent asymptotes is the period π.

Cotangent: Using the Cofunction ID and Symmetry

$$
\cot s=\tan \left(\frac{\pi}{2}-s\right)=\tan \left(-\left(s-\frac{\pi}{2}\right)\right)=-\tan \left(s-\frac{\pi}{2}\right) .
$$

So the graph of $f(s)=\cot s$ is the graph of $g(s)=\tan s$ under a horizontal shift $\pi / 2$ units to the right followed by a reflection in the s-axis.

Figure: Plot of $f(x)=\cot x$. Note that the lines $x=n \pi$ for $n=0, \pm 1, \pm 2, \ldots$ are vertical asymptotes to the graph. The dashed curve is $y=\tan x$.

Cosecant and Secant

Domains: Since $\sin (n \pi)=0$ for integers n,
Domain $(\csc s)=\{s \mid s \neq n \pi$, for integers $n\}$.
Since $\cos \left(\frac{\pi}{2}+n \pi\right)=0$ for integers n, the domain of $\sec s$ is

$$
\text { Domain }(\sec s)=\left\{s \left\lvert\, s \neq \frac{\pi}{2}+n \pi\right., \text { for integers } n\right\} .
$$

Ranges: Note that

$$
|\csc s|=\frac{1}{|\sin s|} \geq 1 \quad \text { and } \quad|\sec s|=\frac{1}{|\cos s|} \geq 1
$$

so the range of both $\csc s$ and $\sec s$ is

$$
(-\infty,-1] \cup[1, \infty) .
$$

Cosecant: Using $\csc \boldsymbol{s}=\frac{1}{\sin s}$

Figure: Two periods of $f(s)=\csc s$. The dashed curve is $y=\sin s$. Note the asymptotes $s=n \pi$ for integers n where $\sin s$ takes its zeros. The curves meet at the relative extrema and have the same period 2π.

Secant: Using $\sec \boldsymbol{s}=\frac{1}{\cos s}$

$$
\frac{1}{1}=1
$$

Figure: Two periods of $f(s)=\sec s$. The dashed curve is $y=\cos s$. Note the asymptotes $s=\pi / 2+n \pi$ for integers n where cos s takes its zeros. The curves meet at the relative extrema and have the same period 2π.

Example

$$
y=a \sin (b x-c)+d
$$

Analyze and plot $y=2 \sin (2 x)-1$

$$
\begin{aligned}
& a=2 \\
& b=2 \\
& c=0 \\
& d=-1
\end{aligned}
$$

Period $T=\frac{2 \pi}{2}=\pi$

$$
\frac{2 \pi}{6}
$$

Phase shift none $\frac{|c|}{b}$
Vertical shift down $1 d$ down $\sin u$ $d<0$

$$
y=2 \sin (2 x)-1
$$

$$
C=0 \quad T=\pi
$$

$1 / 4$ period is $\frac{\pi}{4}$

x	$2 \sin (2 x)-1$
0	$2 \cdot 0-1=-1$
$\pi / 4$	$2 \cdot 1-1=1$
$\frac{\pi}{2}$	$2 \cdot 0-1=-1$
$\frac{3 \pi}{4}$	$2 \cdot(-1)-1=-3$
π	$2 \cdot 0-1=-1$

x	$\sin x$
0	0
$\frac{\pi}{2}$	1
π	0
$\frac{3 \pi}{2}$	-1
2π	0

Example

Analyze and plot $y=2 \csc (2 x)-1$

February 26, 2020

