February 26 MATH 1112 sec. 52 Spring 2020

Trigonometric Functions Graphs of Sine and Cosine Functions

Our goal is to graph functions of the form

$$f(x) = a\sin(bx - c) + d$$
 or $f(x) = a\cos(bx - c) + d$

- Amplitude = |a|
- Period $T = \frac{2\pi}{b}$
- Phase shift (horizontal) is $\frac{|c|}{h}$ (right if c > 0 and left if c < 0)
- Vertical shift is d up if d > 0 and down if d < 0</p>

4 D K 4 B K 4 B K 4 B K

Parent Plots

The period can be divided into four equal segments. For the sine function x-int $\rightarrow \max \rightarrow x$ -int $\rightarrow \min \rightarrow x$ -int \ldots

Parent Plots

The period can be divided into four equal segments. For the cosine function $\max \rightarrow x$ -int $\rightarrow \min \rightarrow x$ -int $\rightarrow \max_{a}$

The Tangent

The function $\tan s = \frac{\sin s}{\cos s}$. Recall that $\cos s = 0$ whenever $s = \frac{m\pi}{2}$ for $m = \pm 1, \pm 3, \pm 5, \dots$

When $\cos s = 0$, $\sin s$ is either 1 or -1. Hence

Domain: The domain of the tangent function is all real number **except** odd multiples of $\pi/2$. We can write this as

$$\left\{ s \mid s \neq \frac{\pi}{2} + k\pi, \ k = 0, \pm 1, \pm 2, \dots \right\}$$

Moreover, the graph of the tangent function has vertical asymptotes at each odd multiple of $\pi/2$.

February 26, 2020 4/16

The Tangent

Range: The range of the tangent function is **all real numbers.**

Symmetry: The function $f(s) = \tan s$ is odd. That is

$$f(-s) = an(-s) = - an s = -f(s).$$

Perodicity: The tangent function is periodic with fundamental period π . That is

 $tan(s + \pi) = tan s$ for all s in the domain.

Note: The period of the tangent function is π . This is different from the period of the sine and cosine.

> February 26, 2020

5/16

The Tangent

A few key tangent values:

And due to symmetry

S	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0
tan S	undef.	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0

Here is an applet to plot two periods of the function $f(s) = \tan s$. GeoGebra Graph Applet: Tangent

Basic Plot $f(x) = \tan x$

Figure: Plot of several periods of $f(x) = \tan x$. Note that the interval between adjacent asymptotes is the period π .

Cotangent: Using the Cofunction ID and Symmetry

$$\cot s = \tan\left(\frac{\pi}{2} - s\right) = \tan\left(-\left(s - \frac{\pi}{2}\right)\right) = -\tan\left(s - \frac{\pi}{2}\right).$$

So the graph of $f(s) = \cot s$ is the graph of $g(s) = \tan s$ under a horizontal shift $\pi/2$ units to the right followed by a reflection in the *s*-axis.

Figure: Plot of $f(x) = \cot x$. Note that the lines $x = n\pi$ for $n = 0, \pm 1, \pm 2, ...$ are vertical asymptotes to the graph. The dashed curve is $y = \tan x$.

Cosecant and Secant

Domains: Since $sin(n\pi) = 0$ for integers *n*,

Domain($\csc s$) = { $s | s \neq n\pi$, for integers n}.

Since $\cos\left(\frac{\pi}{2} + n\pi\right) = 0$ for integers *n*, the domain of $\sec s$ is

Domain(sec s) =
$$\left\{ s \mid s \neq \frac{\pi}{2} + n\pi, \text{ for integers } n \right\}$$
.

Ranges: Note that

$$|\csc s| = \frac{1}{|\sin s|} \ge 1$$
 and $|\sec s| = \frac{1}{|\cos s|} \ge 1$

so the range of both csc s and sec s is

$$(-\infty,-1]\cup [1,\infty).$$

February 26, 2020

9/16

Figure: Two periods of $f(s) = \csc s$. The dashed curve is $y = \sin s$. Note the asymptotes $s = n\pi$ for integers *n* where $\sin s$ takes its zeros. The curves meet at the relative extrema and have the same period 2π .

A D N A B N A B N

Figure: Two periods of $f(s) = \sec s$. The dashed curve is $y = \cos s$. Note the asymptotes $s = \pi/2 + n\pi$ for integers *n* where $\cos s$ takes its zeros. The curves meet at the relative extrema and have the same period 2π .

4= a sin (bx-c) +d Example a=2 Analyze and plot $y = 2\sin(2x) - 1$ b= 2 Amplitude = |2| = 2 C = Dd = -1Ial $T = \frac{2\pi}{2} = \pi$ Period 215 101 Phase shift none d down since d 20 Vertical shi. ft down 1 ◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

February 26, 2020 12/16

 $y=2\sin(2x)-1$ C=O T=TT He period is TT

×	25:~(2×)-1
0	2.0-1 = -1
Thy	2.1-1 = 1
EN	2.0-1 = -
35-4	$2 \cdot (-1) - 1 = -3$
T	2-0-1 =-

.

Sinx δ \mathcal{O} IN NO π \cap 31-2 \cap 211

February 26, 2020 13/16

2

ヘロン 人間 とく ヨン 人 ヨン

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Analyze and plot $y = 2 \csc(2x) - 1$

February 26, 2020 16/16

2

イロト イヨト イヨト イヨト